【摘 要】
:
延迟微分代数系统(DDAEs)是具有时滞影响和代数约束的微分系统,为计算机辅助设计、化学反应模拟、线路分析、最优控制、实时仿真以及管理系统等科学与工程应用问题提供了有效
论文部分内容阅读
延迟微分代数系统(DDAEs)是具有时滞影响和代数约束的微分系统,为计算机辅助设计、化学反应模拟、线路分析、最优控制、实时仿真以及管理系统等科学与工程应用问题提供了有效的数学模型。中立型多延迟微分代数系统(NMDDAEs)是一种结构较复杂的DDAEs,因为未知函数不仅含有多个延迟项,而且未知函数的导数也含有多个延迟项。然而,由于延迟微分代数方程的复杂性,只有极少数延迟微分代数方程能获得其理论解的精确解析表达式。因此,研究延迟微分代数方程的数值解法显得十分重要,而且数值求解微分代数系统已成为主要和重要方法之一。而在数值解的研究中,有效可靠的算法及算法的数值稳定性研究,又是我们必须首先面对的问题。
本文主要讨论了线性常系数中立型多延迟微分代数系统理论解和数值解的渐近稳定性。在线性常系数NMDDAEs理论解渐近稳定的充分条件基础上详细讨论了两种数值方法的渐近稳定性。首先,讨论了连续的龙格库塔方法数值求解多延迟微分代数方程渐近稳定的条件。其次,讨论了两步的龙格库塔方法数值求解多延迟微分代数方程渐近稳定的条件。最后,给出了一些数值实验,数值实验的结果表明理论上的结论是正确的,并且得出两步龙格库塔方法比连续龙格库塔方法稳定性更好。
其他文献
间断迦辽金方法是一类求解双曲型守恒型方程的高阶精度有限元方法,该方法继承了有限元方法的高精度特点,同时采用了高分辨率有限体积格式的思想,如近似黎曼解作为数值通量、总变
传统的信号理论是建立在Fourier分析基础上的,Fourier变换在信号分析中长期占据着十分重要的地位。上个世纪60年代快速Fourier变换算法的产生,使得它的应用更加广泛。在信息处
本文对模糊关系的分解和剩余格上半线性空间的基进行了深入探讨.首先,在[0,1]格上对模糊关系的一系列分解问题作了研究.对模糊关系在inf-α合成算子下的平方根进行了探讨,讨
语篇教学在小学英语教学中占有很大的比重,许多教师都在不断地探索研究如何教好语篇,希望能够找到最佳的方式去解读语篇,让学生学得更好、更扎实。但是,从我们调查的结果来看
所有喜欢玩石头的人都知道“四大名石”——寿山石、巴林石、昌化石和青田石。寿山的田黄名满天下,被称之为石帝;昌化鸡血大红袍、刘关张;青田封门青、灯光冻已成绝响,市面上
缘分,让他与公安边防部队结下了深厚情谊;挂念,让他背起笔墨走进山东公安边防总队;他,杨幸郎,中国人民解放军国防大学书画研究院副院长。笔墨豪情,丹青诗韵。杨幸郎自幼喜欢
数值模拟经常用于获得非线性发展方程的长时间性态,但是其正确性却鲜有理论分析。近年来,数值分析者开始着手通过研究几类非线性问题的长期行为来建立一套数值动力学理论。Lo
郑培民精神应运而生,它集中回答了新的历史条件下当代中国共产党人的价值取向。(一)坚定共产主义远大理想和中国特色社会主义共同理想,把献身党和人民的事业作为人生的最高追
对于全角变化率大、井径扩大率高的“糖葫芦”井眼,易导致套管居中度低,窄边及“大肚子”里的钻井液难以驱替等难题,采用旋转固井技术可以改变流体的流动状态,产生周向和轴向旋流
最优化技术有着十分广泛的应用,它研究如何从某些实际问题的众多可行方案中找出最优的方案。最优化技术在国防、工农业生产、交通运输、金融、贸易、管理、科学研究等许多领