论文部分内容阅读
近十年来,惰性生物材料的表面生物学改性已成为生物材料的研究热点之一。由于磷酸钙盐类生物陶瓷(如羟基磷灰石HA、磷酸三钙TCP等)与人体硬组织的无机成分相近,具有天然优异的生物相容性,是最有前途的惰性生物材料的表面生物学改性涂层材料之一。但涂层成分的多样性(如HA高温下分解)或单一生物活性涂层与基底材料力学性能不匹配,常造成生物涂层活性降低、涂层容易剥落等问题。因此,采用温和的工艺条件,制备同时具有较优生物相容性和力学稳定性的新型生物涂层是一项有意义的工作。本文旨在采用新的复合制备技术,研制具有较优诱导性能、较强体外耐腐蚀能力与较高结合强度的磷酸钙盐/Al2O3及相关复合生物涂层材料。采用扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、傅利叶变换红外光谱(FT-IR)、电子能谱(EDS)、X-射线衍射(XRD)和电感耦合等离子原子发射光谱(ICP/AES)对所制备复合体系的形貌结构、组成及其体外稳定性和诱导能力进行了详细的分析与研究,采用动电位强极化(Tafel极化)技术研究了所制备复合体系在模拟生理环境(林格氏溶液,Ringer′s solution)中的耐腐蚀性能,分析了处理条件对Ti基HA/Al2O3复合生物涂层材料结合强度的影响。主要研究工作及结论如下:(1)以磁控溅射物理气相沉积(MSPVD)Ti基Al膜为底材,采用阳极氧化-水热处理复合技术首次成功制备了磷酸钙盐/Al2O3复合生物涂层材料。结果表明:阳极氧化电压越高,阳极氧化Al2O3多孔膜的孔径越大,阳极氧化Al2O3膜中的Ca/P原子比越高。水热处理(212℃,8 h)后,Ti基含Ca、P元素的阳极氧化Al2O3膜转化为磷酸钙盐/Al2O3复合生物涂层材料;磷酸钙盐结晶于阳极氧化Al2O3膜的孔洞内并外延生长至阳极氧化Al2O3膜的表面,部分磷酸钙盐嵌入阳极氧化Al2O3的孔洞内使磷酸钙盐外层和阳极氧化Al2O3中间层之间形成“T”形结合界面结构。(2)采用阳极氧化-恒压电沉积两步电化学方法首次成功制备了铝基HA/Al2O3复合生物涂层材料。HA/Al2O3复合生物涂层材料在模拟体液(Simulated body fluid,SBF)中显示出良好的稳定性与较强的诱导沉积能力;HA外层的沉积电压越高,铝基HA/Al2O3复合体系在Ringer′s生理溶液中的耐腐蚀能力越强。(3)以MSPVD制备Ti基Al膜为底材,采用阳极氧化、恒流电沉积复合技术首次在Ti基上制备了一种新型的HA/Al2O3复合生物涂层材料,所制备的复合生物涂层材料的外层由微米板条状缺钙HA(Ca-deficient HA,CDHA)晶体构成。在碱性介质中水热处理后,微米板条状CDHA外层转化为由纳米针状晶体构