电化学法选择性溴去除/回收研究

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:ahua501
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
溴是一种重要的化工原料。工业上应用最为普遍的提取方法为空气吹出法与水蒸气蒸馏法,这两种方法均存在能耗高、设备投资大、占地面积大以及安全性低等缺陷,但目前尚未有成熟的新方法可以取代。电氧化的方法以其较低的能耗、简捷的生产流程和清洁的生产过程等优势受到越来越广泛的关注。本文利用Br-与Cl-标准氧化还原电位的不同,提出将电氧化的方法用于浓海水或地下卤水提溴,实现了富氯溶液中Br-的选择性氧化,以替代空气吹出法或水蒸气蒸馏法的数个环节,完成溴的分离与回收。首先,对电氧化法用于浓海水或地下卤水提溴的理论与技术可行性进行了验证,并就提溴反应的动力学模型展开讨论;然后,就共存离子对提溴反应的影响规律进行了探究;最后,面向浓海水或地下卤水的提溴过程,优化确定了适宜的操作条件,并从能耗角度进行了初步评价。结果表明:以石墨电极为工作电极,当阳极电位控制在1.0 V–1.5 V vs.SHE(standard hydrogen electrode,标准氢电极),Br-的选择性电氧化在理论上是可行的;在1.350V电位下,即使通电较长时间,较高浓度的Cl-也不会被氧化,而较Cl-浓度低三个数量级的Br-却可以被氧化,即在该电位下浓海水或地下卤水提溴具有技术可行性。浓海水与地下卤水提溴的电氧化反应均符合二级反应动力学模型。在浓海水提溴中,因Cl-的存在使溶液总电导率提升,进而对Br-的电氧化反应表现出较强的促进作用;SO42-也因其对溶液总电导率的提升表现出对Br-电氧化反应的促进作用;钙镁硬离子的存在与否对电氧化提溴的影响很小。当总离子浓度达到37.32g/L时,水电解的增强导致Br-电氧化电流效率的下降与单位能耗的升高。在浓海水提溴过程中,4 h–10 h为适宜的操作时间段。在地下卤水提溴中,Cl-的存在对Br-电氧化的反应可同时产生促进与抑制作用:促进作用来源于随Cl-浓度增大而提高的溶液总电导率,抑制作用来源于Cl-与Br-在石墨电极表面存在的竞争吸附;在Cl-浓度低于32.0 g/L时,促进作用占主导,在Cl-浓度增大至32.0 g/L之后,抑制作用开始超过促进作用。Br-电氧化的单位能耗随Cl-浓度的增大而减小,电流效率受Cl-浓度的影响很小。在地下卤水提溴过程中,6 h–10 h为适宜的操作时间段。
其他文献
非晶态金属磷酸盐早已为人们所熟知,并在1955年至1965年期间受到了广泛的关注,特别是它们作为无机离子交换剂在高温或大剂量电离辐射下发生的过程中的潜在用途。以α-四价金属磷酸盐为例,属于PO43-四面体基团的氧能以不同的方式、不同的数目与四价金属呈八面体的构型共享。它们是层间有着大量氢离子的典型的阳离子层状化合物,因此有很强的阳离子交换能力。本研究以α-磷酸钛为目标物,采用直接离子交换法制备了二
碳酸甲乙酯是一种环境友好型不对称碳酸酯,因其结构兼具甲基、乙基、羰基、甲氧基、乙氧基等基团,化学性质十分活泼,常被用作有机合成的中间体。此外,因其具有粘度小、介电常数大、锂盐溶解度大等性质,是一种理想的锂电池电解液,具有广阔的应用前景。传统的光气法合成碳酸甲乙酯由于原料剧毒、副产物腐蚀性强而被淘汰;氧化羰化法不仅生产条件严苛且目标产物选择性较低,因此尚未实现工业化。酯交换法是目前合成碳酸甲乙酯的主
油茶属于山茶科,是一种木本多年生植物,主要生长在热带和亚热带地区。油茶壳是油茶的种子外壳,在榨油过程中常被当作废料丢弃。许多研究表明,油茶种子壳中含有多种植物化学物质,如醛糖、丹宁和木质素衍生物,特别是原花青素(PC)。原花青素是一种具有特殊分子结构的生物类黄酮,具有低毒、高生物利用度、长代谢半衰期等特点。原花青素在抗氧化和清除自由基方面的卓越性能已被美国食品和药物管理局认可。此外,原花青素还具有
2-乙基己醇(在丁辛醇行业也称辛醇)是一种重要的有机化学品,主要用于生产增塑剂。其工业化生产由丙烯氢甲酰化、正丁醛自缩合和2-乙基-2-己烯醛加氢三步反应组成。将后两步反应进行集成,即由正丁醛一步合成辛醇,可以到达缩短工艺流程、减少能耗和降低生产成本的目的。鉴于该体系中存在正丁醛直接加氢副反应,提高辛醇选择性是实现该反应集成的关键。本文针对该问题开展研究,具有重要的学术和应用价值。首先,采用共浸渍
活性炭已经在多个领域展现出优秀的性能,其商业化应用的需求促使了原料的选择追求更加廉价化和制备工艺的简单化。然而,活性炭的物理结构特征与处理工艺密切相关。因此,本文从碳源的选择与活化工艺入手,以简便的制备工艺得到了高比表面积的活性炭,分析了它们的物理结构与电化学性能相关性,并且明晰了活性炭的活性中心,为工业化应用提供了基础研究。分别选择了生物质棉秸秆和杨木屑作为碳源。采用了CO2和KOH活化工艺从棉
随着锂离子电池需求量的增加,碳酸甲乙酯(EMC)作为一种性能优良的锂离子电池电解液的溶剂,其合成受到广泛的关注。碳酸二甲酯(DMC)和碳酸二乙酯(DEC)酯交换合成EMC方法中三种物质均可做锂离子电池电解液溶剂,在很大程度上降低了分离成本,是一条有发展前景的工艺路线。该路线的实施,关键是开发高效稳定的催化剂。本文制备了具有酸碱双功能活性位点的无定形金属磷酸铝催化剂,并探究了其催化碳酸二甲酯和碳酸二
本文研究了一种以两块石墨电极为阴阳极在硫酸溶液中同时电化学转移钒渣(V-slag)和电催化降解玉米芯木质素的新方法。通过X荧光光谱仪(XRF)和X射线光电子能谱仪(XPS)分析钒渣的金属组成成分和钒渣中重金属铁、钒的化学状态。利用循环伏安法和线性极化曲线验证了反应体系的电化学机理,并且探索了石墨电极在溶解钒渣的硫酸溶液中的电化学性能。实验主要利用钒渣中的Fe2+/Fe3+和VO2+/VO2+氧化还
泡沫分离作为一项界面吸附分离技术,因具有无污染、操作条件温和、易于放大等优点,受到研究者们的广泛关注。近年来,随着分离工艺和过程机理研究的不断深入,泡沫分离的工业化进程得到加快。然而,在泡沫分离过程中,大量气-液界面的产生往往诱导蛋白质聚集,造成蛋白质功能活性较大程度的损失。这极大的限制了泡沫分离技术在蛋白质分离领域的工业化应用。利用超声波效应解决在泡沫分离蛋白质中产生的问题,目前为止还尚未有人报
富氮活性炭由于其丰富的表面官能团、高比表面积、优良的导电性、低成本和环境友好性等优点,在储能转化、气体吸附、水净化和催化剂载体等领域受到了广泛的关注。富氮生物质中具有大量的含氮化合物是制备富氮活性炭的优良前体。以富氮生物质为碳源制备活性炭能够实现资源的有效利用,提高生物质的附加价值,减少因直接焚烧生物质废弃物造成的环境污染问题,具有节能、增值、环保等特点。本论文以烟柴杆和咖啡渣为原料,通过预碳化、
石墨烯因超高的比表面积和电导率等特点成为超级电容器领域的热门材料,但石墨烯片层易发生团聚并且双电层电容电荷储存能力有限,极大地限制了石墨烯的应用。而将二维石墨烯设计成三维石墨烯水凝胶(3DGH)、元素掺杂以及赝电容材料复合是提高石墨烯电化学性能的有效手段。本文致力于通过简单快速高效的方法制备用于超级电容器电极材料的杂原子掺杂3DGH以及3DGH复合材料,进行了如下工作:首先,应用改进的Hummer