【摘 要】
:
目前大数据和人工智能与我们的日常生活的联系日益密切,商标必须经过有关部门审批通过才能得到法律的保护,随着经济的发展,商标注册数量剧增,在申请和审批时,为了避免申请的商标和已有商标相似,需对已有商标进行检索,但传统手工检索商标速度慢,存在漏检等弊端,所以本文对商标自动检索系统进行了研究。本文设计了一个自动商标检索系统,该系统由图像预处理模块、BOF模型制作模块和分类器模块构成。商标检索涉及的商标原始
论文部分内容阅读
目前大数据和人工智能与我们的日常生活的联系日益密切,商标必须经过有关部门审批通过才能得到法律的保护,随着经济的发展,商标注册数量剧增,在申请和审批时,为了避免申请的商标和已有商标相似,需对已有商标进行检索,但传统手工检索商标速度慢,存在漏检等弊端,所以本文对商标自动检索系统进行了研究。本文设计了一个自动商标检索系统,该系统由图像预处理模块、BOF模型制作模块和分类器模块构成。商标检索涉及的商标原始图像来源较广且均存在无关背景,若不将原始图像采用分割去除无关背景而直接检索,将会影响检索的精度。目前常用Grab Cut算法进行图像分割,而Grab Cut算法对复杂背景分割不精确,存在过分割和欠分割的情况,针对这一问题,本文给出了一种改进的Grab Cut算法,该算法融合了Graph Cut和Grab Cut两种算法的思想,利用Graph Cut将图片分为不同区域,通过设定双阈值判定不同区域属于背景或前景,在此基础上初始化商标图像的掩膜,再进行Grab Cut迭代,完成图像分割。从Belga Logos开源数据集中选取100张图片验证该算法,结果表明该算法Jaccard相似性指数为0.94,峰值信噪比为37.871,分割精度为94%。BOF模型制作模块通过图像特征提取和描述子生成得到图像数据信息,并将图像信息进行量化。图像特征提取是关键,目前通用的特征提取算法中FAST算法速度较快,但FAST算法存在较多的非局部极大值点和边缘噪点,对后续分类模块的性能存在较大影响。针对上述问题本文给出一种自适应阈值的特征提取算法,该算法首先根据图像性质采用K-means和图片熵方法,以自适应的方式来确定FAST检测算法中的阈值,其次使用FAST提取特征点后使用Hessian矩阵消除边缘响应,最后引入非极大抑制点排除非局部极大值点。实验结果证明,改进后的算法减少了无用特征点的数量,提升了提取精度。对商标图像量化后的数据信息进行分类,完成商标检索系统。本文从Belga Logos数据集中选取10类商标图像进行训练,形成训练集,未使用改进算法的系统训练时间为183.46s,但使用改进算法的系统训练时间为36.682s。使用训练文件进行检索,并利用PR曲线和AP值对使用改进算法的系统和未使用改进算法的系统进行分析,结果表明,使用改进算法的系统PR曲线覆盖面积大于未使用改进后系统,并且AP值由0.764提升至0.926。
其他文献
在互联网时代,人们获取图像的方式主要是通过搜索引擎在数据库中进行检索,但由于一句话可能对应很多不同的图像,所以很难找到想要的图像。随着人工智能技术的突破创新,文本到图像生成任务也具有了一定的可行性。文本到图像生成是一项涉及了自然语言处理与计算机视觉的跨模态任务,该任务的目标是不仅要保证生成的图像真实,而且要保证生成的图像与给定的文本描述语义一致。近年来,研究者以生成对抗网络(Generative
随着知识技能日新月异,让训练对象尽可能快的通过学习掌握技能和知识,以满足不同任务的需求,已经成为非常重要的研究课题。因为不同个体的学习能力有差异,而且会存在优先级高的对象个体,如何进行引导式自动学习,以提高学习的效率和质量,减少不必要的时间和物力消耗,已成为学术界和工业界共同关心的问题。为了解决传统式引导式学习方法的弊端,优化学习资源分配,本文在基于均匀采样学习算法和基于贪婪策略学习算法的基础上,
近年来,随着基于5G的物联网的发展,无线终端数量及其产生的数据呈现了爆炸性的增长。面对计算密集型的深度学习应用,集中式训练深度模型对计算性能和通信连接都提出严峻的挑战,迫切需要把计算资源前移至接近数据源的节点,以分布式的方式训练深度模型以降低对计算和和通信的资源需求。本文使用的分布式技术是交替方向乘子法(Alternating Direction Method of Multipliers,ADM
歌剧是集音乐、舞蹈、戏剧、文学、舞台艺术于一体的综合性艺术形式,产生于16世纪末的意大利。经过我国几代老艺术家不断地辛勤探索,在吸收外来艺术形式的同时与我国传统文化相结合,创造出具有中国民族特色的中国歌剧,《悲怆的黎明》作为新时代的一部大型歌剧,该剧的成功同时也激励了我国民族歌剧的艺术创作。《悲怆的黎明》描述了东北某公学一群热血青年为了新中国成立在战火中浴血奋战的悲壮历程,歌剧中的革命先辈们成就大
随着时代的发展,生产力的提高,有许多人从繁琐的工作中解脱出来,这一切则归功于工业机器人的发展。同时工业机器人技术也随之大幅度提升,人机交互技术也得到了快速的发展,其应用范围也更加的广泛,人机交互的方式也更加符合人与人之间的交互方式,如人脸识别、可对话的智能音箱等。这些交互方式大大减少了人体操作机器相关指令的操作,使人体能够更加自然的与机器进行交互,大大提升了人类使用机器时的舒适性。人机交互技术在可
近年来,得益于4G技术的普及、5G通讯技术日趋成熟以及移动智能设备的完善,视频数据与日俱增。如何从海量视频数据库中快速检索到用户感兴趣的视频已经成为信息化时代的一个有意义的课题。传统的基于文本关键字的视频检索方法难以满足用户日益增长的需求,因此,基于内容的视频检索方法应运而生。本文对基于内容的视频检索的关键技术进行了深入研究,主要包括关键帧提取、特征提取与表示。在关键帧提取方面,现有的算法存在以下
软件定义网络是一种新兴的网络技术,它能够消除传统分布式网络架构的弊端。然而,在这种新兴的架构中,网络安全问题进一步增多,流表溢出攻击是其中一个非常严重的问题。由于这种攻击与传统的分布式拒绝服务攻击有着不同的特征,目前主流的检测系统对这种攻击没有很好的监测效果。本文在分析了现有的流表溢出攻击缓解方案的基础上,研究在检测精度、响应速度和资源消耗量等方面表现更好的方法。主要工作如下:首先,提出了一种基于
近年来,我国正在积极建设综合高效的智能运输基础设施。隧道作为重要的交通设施之一,在其长期使用期间,隧道衬砌会不可避免地出现各结构病害,会危害到隧道的安全运营。因此隧道衬砌结构病害高效的识别与分类,有利于保证隧道运营安全,有一定的工程应用价值和显著的社会经济效益。探地雷达(Ground-penetrating Radar,GPR)是目前广泛使用的隧道衬砌结构病害检测工具。但目前对于GPR数据的解释主
近来,全球经济快速增长,能源的消耗日益上升。建筑物的传统温控方案,造成了一定的能源浪费,并且存在忽略人体冷热感受的情形(例如在空调开启的情况下感到很冷或者很热)。构建实时的非接触式人体热舒适检测则能够有效缓解以上的情况,实现“以人为本”智能建筑。而目前的非接触式热舒适检测主要使用红外等设备,由于其价格昂贵,安装不便等原因,其并不能很好的应用于智能建筑的热舒适环境。同时,现有的一些使用图像捕捉等设备
聚类(Clustering)是一种用于探索数据结构的数据分析技术,它能够根据数据特征进行分类,将具有相同或相似性质的数据划入同一个子组(簇),不在同一簇中的数据通常其性质是不同的。聚类分析是基于特征的基础上找到样本的子组,或是在基于样本的情况下找到特征的子组。在聚类分析中引入差分隐私技术是当前研究领域绕不开的热点。差分隐私是一种数据失真技术,能够抵御任何背景知识下的攻击,且不受数据集大小的限制。在