论文部分内容阅读
含氮杂环(吡唑、咪唑和吡嗪等)的多齿配体在模拟生物分子中的具有特殊的重要性,更为重要的是,它们在与金属离子配位时,显示出极其丰富的配位模式,从而可以构筑出结构新颖和在分子结构工程学上具有重要意义的配位化合物。基于此,本论文选择了三-(苯并咪唑-2-甲基)胺(NTB)为主要配体,并从其出发,合成了十二个单核和多核的新配合物。本论文工作将着重探讨了不同的反应条件对配合物形成的影响。例如:pH值对配体的存在形式和其配位特征的影响;温度、配体的质子化程度、第二配体的不同和阴离子以及溶剂等对配合物结构方面的影响;通过这些实验,我们成功地得到了从单核到二核乃至多核聚合物。金属配合聚合物的结构显示了从零维、一维到二维的合成设计思路。同时,也通过实际例子说明了分子自组装的原理。这些配合物在结构上体现了如下创新性:1、打破了迄今尚没有去质子NTB作为配合物配体的现状。2、首次实现了NTB配位作为配位聚合物结构单元。下面,我们将按照论文的章节介绍本论文的主要工作。第一章概述了配合物的分类情况,影响配合物结构的主要因素以及配合物的潜在应用等。其中,着重介绍了三-(苯并咪唑-2-甲基)胺的配合物在生物模拟方面的意义及其配合物合成方面所获得的进展。在此基础上,我们说明了本课题的选题意义。第二章主要介绍了由配体NTB与二价Ni2+、Zn2+、Fe2+、Cu2+和Cd2+在溶剂热或常规条件下反应得到的七个新型单核配合物。在这些化合物中,NTB配体均采取了κ4-N,N,N.N配位。但是,由于金属离子的电子组态和所采取的杂化方式不同,呈现了三角双锥或四方锥五配位或者变形八面体的六配位。在晶体堆积中,由于分子间的相互作用的差异,分子或以分离的单分子或以超分子作用联系的双分子形式出现。特别是通过比较Cu2+离子的配合物[Cu(H3L)(SO4)]·H2O(4),[Cu(H3L)Cl]Cl(5)的键长和键角我们可以发现:阴离子对配合物的结构有明显的影响。此外,配合物[Cd(H3L)(SO4)](6)和{[Cd(H3L)(SO4)(H2O)][Cd(H3L)(SO4)])(7)是在不同溶剂配比下得到的。但是,它们分别呈现了Cd2+的五和六配位。从而,说明了溶剂的构成对配合物的形成也有影响。在第三章,我们主要介绍了一些二核,三核,乃至多核的配位聚合物的合成及其结构。使配合物在前章介绍的单核配合物的基础得以延伸的主要方法是:通过加入连接性的第二配体,如多羧酸,氰根和硫酸根。目的是通过第二配体的桥连作用,使配合物得到发展,从而形成多核配合物。另一方法是加氨水调节pH值,使NTB配体质子化。使之从纯粹的螯合配体转变为桥连配体,使配合物结构得到延伸。这些方法在结构晶体学上具有一般意义。也体现了配位化合物合成的不完全可控性。这些配合物包括了[Zn2(H3L)2(m-BDA)]SO4(8),[Cd4(H2L)2(SO4)3]n(9),[Cu4(H2L)(H3L)(SO4)3]n (10),[(CuCN)3(H3L)]n(11)和[Cu7(CN)3(HL)2]n(12)。其中,(8)是通过间苯二甲酸将两个单核单元桥联在一起形成的二核配合物,(9)和(10)是以硫酸根桥基形成的二维配位聚合物。值得注意的是在10当中,去质子的H2L-也起到了桥基的作用。(11)、(12)为氰根和H2L-和HL2-桥联得到配位聚合物。其结构也是二维网络。从去质子化的NTB配体的桥连功能可见,可以通过改变溶液的pH值来调控配合物的结构。第四章对全文工作进行了总结,概括了如何以NTB为主配体,通过控制实验条件使配合物的结构从简单到复杂,从零维到多维的基本思路。