论文部分内容阅读
为了保障移动Ad Hoc网络的服务质量(Quality of Service,QoS)需求,选择合适的QoS路由算法是需要研究的重要问题之一。但研究表明,多约束条件下的QoS组播路由问题属于多项式复杂程度的非确定性问题(Non-deterministic Polynomial Complete Problem,NPC),利用传统算法很难求解,因此,用启发式算法解决QoS组播路由问题成为了新的研究方向。蚁群算法由于其分布式计算、单个智能体实现简单、支持多路径等特点,适合应用于QoS组播路由算法。目前,对移动Ad Hoc网络QoS组播路由的研究主要集中于延迟抑制最小代价组播路由问题、带宽抑制最小代价组播路由问题以及延迟抖动抑制的最小代价组播路由问题等,这些研究工作对能量消耗、组播生存期和网络生存期等问题的考虑较少。而移动Ad Hoc网络的能量是非常有限的,如不考虑对能量消耗的合理控制,很可能会影响网络的整体性能。因此,本文将研究的重点放在了移动Ad Hoc网络的组播路由能量优化问题上,以下为本文的主要研究内容及创新点:(1)本文首先研究了移动Ad Hoc网络的概念特点及网络结构,分析了QoS组播路由目前所面临的问题,对比研究了现有的QoS组播路由算法,并详细研读了移动Ad Hoc网络能量优化的思想。(2)本文接着研究了基本蚁群算法原理及其经典的改进方案,为了研究基于多约束问题的蚁群算法改进,本文在旅行商问题(Traveling Salesman Problem,TSP)中引入了城市拥堵值作为约束参量之一,并基于此多约束的TSP问题,提出了一种对蚁群算法的改进方案。该方案不再使用等值的初始信息素浓度,而是采用拥堵值参量的归一化值作为初始信息素浓度,这样做可以降低蚁群算法搜索初期的盲目性,使蚂蚁更倾向于选择拥堵值较小的路径。仿真表明,该算法能以较快的速度搜索到具有较小拥堵值的最小代价路径。(3)最后参考组播路由的能量优化思想,本文对基于蚁群算法的QoS的组播路由算法进行了改进。该改进方案以(2)中叙述的改进蚁群算法的思想为基础,在QoS的组播路由算法中引入链路能量水平作为QoS约束之一,并将其作为影响蚂蚁信息素更新的一个因子。这样做能引导算法在路径构建过程中选择能量充足的节点,进而达到促进网络能量均衡使用的目的。仿真表明,该方案能在保证组播路由算法的代价、时延等性能良好的前提下,实现优化组播网络能量的功能。