论文部分内容阅读
连续变量Cluster纠缠态是构建量子信息网络和执行单通道量子计算的关键性资源,可以广泛应用在量子信息通讯、量子计算以及量子测量等领域,进而不断促进量子信息科学技术的飞速发展。因此,如何获得连续变量Cluster纠缠态已经成为量子光学领域科学家研究的热点之一,现阶段已有一些基于频域和时域产生多组份纠缠的理论方案和实验研究,产生的多组份纠缠可用于实现波分复用技术和时分复用技术。 本文我们以运行在阈值以下的大菲涅尔数(Large-Fresnel-number)简并光学参量振荡器(DOPO)和自成像的光学参量振荡器(OPO)作为研究的基础模型,利用两束拉盖尔高斯模泵浦光学腔,通过参量下转换过程产生基于空间模式梳的连续变量Cluster纠缠态。以场的哈密顿量和朗之万方程作为计算的起点,计算出各个场的稳态方程以及正交振幅和正交位相的量子起伏。在实验可行的参数机制下,给出纠缠度随泵浦参数、归一化分析频率等的变化关系,找到最大纠缠度对应的最佳参数,从而验证了连续变量空间Cluster纠缠态之间相互纠缠。这是一种从频率域扩展到空间域的理论方案,具有可操作性,产生的连续变量Cluster纠缠态可以用于实现空分复用技术,为未来实用性量子计算及大容量光纤的量子保密通讯工作奠定了坚实的基础。 本文研究的主要工作如下: (1)利用两束相同频率和偏振的拉盖尔高斯模(lgp1,lgp-1)泵浦大菲涅尔数DOPO,产生基于光学空间模式梳的11组份拉盖尔高斯模的连续变量Cluster纠缠态,并且利用Cluster态的纠缠判据证明连续变量Cluster态之间确实存在纠缠。此方案中的大菲涅尔数DOPO可以使所有的下转换模同时并且持续的非线性相互作用和共振,在下转换过程中满足动量,能量和轨道角动量守恒。这种基于光学空间模式梳的连续变量Cluster纠缠态在基于测量的量子计算、量子信息过程和量子图像等方面都有重要的应用。 (2)我们以自成像OPO作为理论模型,在腔内分别放置两块不同相位匹配zzz和yyy参量下转换的非线性晶体PPKTP,通过考虑模式的不同偏振使下转换模的数量增加一倍。利用两束同频率但不同偏振(z,y)的拉盖尔高斯模(lgplz,lgp-1y)泵浦OPO,通过参量下转换过程产生20个简并频率不同偏振的拉盖尔高斯模,经过50/50分束器耦合,形成基于空间模式梳的连续变量双轨(Dual-ail)Cluster纠缠态。此方案在实验上具有很强的操作性和可控性,为将来产生大尺度的空间Cluster纠缠态提供了理论基础和实验指导。