基于MiEs-TENGs可穿戴阻燃耐热传感器的设计、制备及其对人体手势、步态的识别

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:ivy2357
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
快速发展的IoTs和传感器技术使得安全管理变得越来越便捷化、智能化,实时的安全监测能够保证人员在工作时得到更好的保护。多功能的可穿戴个人防护设备因其便携性和保护性成为新一代安全监测设备。但是传统可穿戴防护设备装配的传感器过于依赖电池供电,巨大的能耗和复杂的线路连接限制了其进一步发展。自供电的NG传感器提供了一条解决能耗的绝佳思路,但是其易燃性限制了在高温场景下的应用。因此,本文基于新一代可穿戴防护设备的低能耗、便携性和阻燃耐热要求,采用摩擦纳米发电机自供电的方法,设计制备出有一定耐热阻燃的柔性摩擦电正负极材料,同时通过结构设计组装出两种类型的传感器,一种装配在上肢用于感受手势信号,一种内置在鞋内用于探测人体步态。研究所制备的传感器防火、耐热和输出等与结构、材料之间的关系,利用机器学习对传感数据进行分类。主要工作如下:(1)利用简单的组件构建了能以固定频率、恒定力大小进行拍打的摩擦电输出性能测试平台。从选取合适的摩擦电正负极材料出发,综合研究其阻燃、耐热和摩擦发电性能。考虑到柔性电极的需要,引入MXenes二维纳米材料,制备出无需额外导电添加剂和有机改性剂的水性油墨。研究发现,具有阻燃耐热特性的硅酸铝纤维、芳纶纤维制品都可以作为摩擦电正极,其中有着良好力学性能且容易涂敷油墨电极的芳纶纤维被选为本工作的摩擦电正极材料。此外,相比较于市场上静电处理后的聚四氟乙烯纤维制品,硅胶薄膜因其更高的摩擦电输出和形状自定义能力被选为本工作的摩擦电负极材料。(2)考虑到本工作只有芳纶摩擦电正极涂敷导电电极,结合经典的摩擦电原理分析出本工作属于黏附电极接触分离模型的变体。随后基于该原理制备了两种不同类型的传感器,一种能够感受较大的形变(E-TENG)而另一种能够识别压力分布(G-TENG)。具体而言,将E-TENG装配到胳膊上,随着胳膊弯曲程度增加其输出电压上升。研究发现了G-TENG的最小分辨率为间距1cm(阵列电极边长为1cm),并通过分析不同电极电压之比显示了G-TENG在点接触上良好的探测能力。在引入机器学习后根据不同电极电压的特征建立了分类模型,识别率100%。(3)根据可穿戴防护设备的要求,本传感器主要识别动作部位为胳膊和脚底,主要识别动作为应急手势和不同的步态。两个E-TENG被装配到消防服胳膊上,利用不同电极的不同响应去识别应急手势(静止通行,向右转,向左转)。G-TENG被内置到鞋内,利用机器学习对其数据进行分类,划分类别为跑步,走路,左脚跳,右脚跳,双脚跳,上楼梯,下楼梯,下坡,上坡。此外,根据数据采集需求,设计了多通道数据采集系统。
其他文献
定子分离式磁通反向电机是一种新型定子永磁型电机,由传统磁通反向电机演化而来。定子分离式磁通反向电机的永磁体和绕组分别放置在内、外定子上,解决了单定子磁通反向电机永磁体和电枢绕组的空间冲突问题,能够进一步提升功率密度;且电枢绕组和永磁体分开放置,温度管理更加方便,进而降低永磁体退磁风险,在风力发电、波浪发电等低速直驱领域具有潜在应用前景。但是其两层气隙和两层开槽的特殊结构会使得内外气隙齿槽转矩叠加,
高强度低收缩性的聚酯纤维可以作为骨架材料广泛应用在很多三元乙丙橡胶制品,二者之间的界面粘合性能是影响两者综合性能的关键因素。两者之间的极性相差大、表面模量梯度也有较大差距,因此界面相容性差。工业上常在EPDM混炼胶体系种加入间苯二酚-甲醛-白炭黑(HRH)以及在聚酯纤维表面浸渍间苯二酚-甲醛-胶乳(RFL),来改善两者之间的界面粘合效果,但是都存在间苯二酚和甲醛有害物质的释放等危害环境和人体健康的
随着经济高速发展和人口增长,建筑能耗和相关碳排放量急剧上升。为了降低建筑能耗,太阳能光伏发电系统备受关注。然而,光伏组件只能将不到20%的太阳能转化为电能,而接近80%的太阳能则以热的形式散失到环境。为此,基于太阳能光伏光热综合利用的联产系统可显著提高太阳能利用效率,以促进建筑节能减排。联产系统的组件配置方案密切影响光伏光热一体化(PVT)集热器的运行温度和效率,对系统整体热力经济特性有显著作用,
近年来,随着基于生物电信号的人机接口控制技术在康复设备、治疗设备领域的发展,已经成为语音控制、视觉感知等人机交互领域新的研究热点。为了帮助运动障碍人群提高生活自主能力,以及减少对于医护人员的依赖,本文提出一种便携式多模态人机接口,能够帮助运动障碍人群用来控制车辆行驶的过程,并在无障碍区域通行。其智能驾驶系统控制的实现方式是通过面部肌肉群左右侧咀嚼肌收缩产生,并在头部颞叶区的头皮采集的颞肌肌电信号,
中国的城镇化率迅速提高,制约着城市的发展和扩张,城市更新改造成为新时期城市发展的潮流,可以盘活建设用地,改善人居环境、促进片区的产业转型和升级,激活城市的活力和破解城市发展困境。但城市更新改造涉及政府、集体组织、居民、开发商以及其他利益相关者,存在利益分配难以均衡的问题,主要原因是“自上而下”的城市更新模式之下,利益相关者缺乏利益博弈的平台,以及博弈信息不完全,各利益相关者利益难以达到均衡。本文应
为了能提升串联式工业机器人的机构性能,同时能对改进后的复杂机器人的弹性动力学问题进行快速准确的建模分析,该博士论文基于含局部自由度的空间连杆机构的研究,提出了一种宿主-寄生仿生机构的优化设计方法,揭示了寄生支链与自由度分布之间的寄生演变规律。以宿主-寄生机器人为研究对象,利用实验测量的刚度、固有频率和振动位移曲线等条件,提出基于极少计算单元和多实验拟合的拟合弹性动力学建模方法,可以明显提高模型的计
肿瘤是全球性疾病,严重威胁国民健康。尽管当下最有效的免疫治疗在临床上取得重大成功,其对脑部肿瘤的治疗仍面临巨大挑战。脑胶质瘤(GBM)复杂的生理和病理屏障,严重限制了药物的递送和抗肿瘤免疫效应。针对上述问题,本论文对基于树枝状大分子PAMAM的衍生物进行筛选,发现能诱导强烈免疫原性细胞死亡(ICD)的生物材料D47,并在D47的基础上,利用可以与脑部血管内皮细胞表面高表达的低密度脂蛋白受体相关蛋白
为解决地铁工程建设初始投资大、资金投入密集、成本回收期长、建设资金不足等问题,轨道交通TOD模式应运而生,它不仅可以促进土地利用集约化,还能提高土地开发效益,形成新的居住模式。但地铁上盖项目往往位于城市中重要的交通节点,建设开发不仅会受到自然环境影响,还会受到社会环境制约。与白地上进行的房地产开发项目相比,其施工风险因素更多,更容易出现各种安全问题,需要针对其自身特点准确识别施工风险,分析评价风险
修复材料与人体的力学适配是骨修复,尤其是大段骨缺损修复过程中的重要标准。构建具有良好力学性能和促成骨性能的多孔结构修复支架,能够有效实现骨组织修复。生物陶瓷与天然骨组织的无机成分组成相似,是一种极佳的骨修复材料。然而,目前基于生物陶瓷材料制备的骨修复支架大多存在力学性能不足的问题,且目前的解决方法如调节成分或表面改性等,能够起到的作用十分有限。因此,从支架的结构设计出发,通过结构力学手段实现增强成
挥发性有机物(Volatile organic compounds,VOCs)是形成臭氧(O3)和细颗粒物(PM2.5)的重要前体物,其排放对人体健康及大气环境造成严重危害。因此,需要利用科学有效的技术对VOCs的排放进行控制。催化氧化是目前治理VOCs最有效的技术之一,研发高效、稳定、低成本催化剂是该技术的关键。金属氧化物催化剂由于其相对贵金属催化剂具有更低的成本和更高的催化稳定性已实际应用于V