Hypergeometric and Rational Solutions with Polynomial Coefficients

来源 :南开大学 | 被引量 : 0次 | 上传用户:shuishui06
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This thesis is mainly concerned with Gospers algorithm, its generalization, and rational solutions. Also it is concerned with the corresponding problems for the q-case. In Chapter 1, we first give a background on computerized proofs of identities, then we give some notations and definitions that are used throughout the entire thesis.After giving the basic results on Gospers algorithm, hypergeometric solutions of linear recurrences, and rational solutions of linear difference equations, we present the original approach of Gospers algorithm for indefinite hypergeometric summation together with the derivation of Gospers ansatz. In Chapter 2, we show that the uniqueness of the Gosper-Petkovsek representation of rational functions can be utilized to give a simpler version of Gospers algorithm. This approach also generalized to find hypergeometric solutions of linear recurrence equations with polynomial coefficients of any order, provided their leading and trailing coefficients are constant. Then we solve the same problems for the q-case. In Chapter 3, for given two polynomials, we discover a convergence property of the GCD of the rising factorial of a polynomial and the falling factorial of another polynomial, which serves as a simple approach to Gospers algorithm and the explicit formula for Abramovs universal denominator for linear difference equations with polynomial coefficients. We use this explicit formula to compute rational solutions of linear dif ference equations with polynomial coefficients and hypergeometric solutions of linear recurrence equations with polynomial coefticients, provided their leading and trailing coefficients are constant. In addition, we derive Abramovs universal denominator from Barkatous explicit formula. For a special case of first order linear difference equation we show that the universal denominators given by GP algorithm, and algorithm VMULT are factors of the universal denominator given by Abramovs algorithm and they are equal to each other. Then we show that our derivation of Gospers algorithm and the explicit formula for Abramovs universal denominator can be carried over to the q-case. To illustrate the applicability of our approaches, some examples are presented.Keywords: hypergeometric solution, Gospers algorithm, GP representation, rational solution, Abramovs algorithm, universal denominator, q-hypergeometric solution, qGospers algorithm, q-GP representation, q-rational solution.
其他文献
高阶平均曲率和球面刚性定理双曲空间Hn+1或者Rn+2中的开半球面Sn++1。设φ:Mn→Nn+1是等距浸入,Hr为Bp,H{1/2-1/p,1/2-1/P-1,p=1或者H-0,其他.A,H表示二次方程x2+n(n-2/√n(n-1)
在本文中,首先证明了对于任意的Fuchs群Γ,当H/Γ是一个双曲型Riemann曲面时,Teichmüller曲线V(Γ)上有唯一的复流形结构使得从Bers纤维空间F(Γ)到V(Γ)上的自然投影是全纯的
本文涉及的图均为有限,非空,无向,简单图,主要研究下列四方面的问题:  1.2k点可删的导出匹配可扩图的度条件。  2.k边可删的导出匹配可扩图的度条件。  3.3正则1边可删的导
中考试题不仅具有考试选拔甄别功能,而且还具有很好的教学功能,其中有不少优秀题目可供教学引用和拓展,兼具有良好的教育功能.其中,有一些精品试题,是命题专家们智慧的结晶,
在媒介融合时代,电视新闻报道会发生哪些变化?记者该如何适应这些变化呢?美国媒体近年来的变革能给我们一些启发。一、新闻线索的获取以哥伦比亚本地电视台KOMU为例,看看他们
新课程教学改革以来,越来越多的声音呼唤“把课堂还给学生”,让学生尽情地展示出课堂的“主体美”、“创造美”,为此我们江苏地区的教育界同仁纷纷提出了“先学后教”、“少
小学语文教学中的德育特点繁多,教师们可以结合层次性、审美性、渗透性等特点开展课外活动、课外阅读等等在小学语文教学过程中渗透进德育教育,从而实现达到培养学生语文能力
图论是一门古老却又十分活跃的学科,也是一门很有实用价值的学科.作为组合数学和离散数学的重要分支,它是研究自然科学,工程技术等的重要数学工具,应用极为广泛.在经济发展的
本文分两部分:分形插值函数和基于分形插值函数的图像压缩. 分形学作为一门新的学科在许多领域都得到了广泛的应用,本文将讨论分形插值函数,它作为一种新的插值拟合方法,在曲
众所周知,政治性与文化性是思想政治教育的两大基本属性,两者有着紧密的联系,但同时又具有各自鲜明的特色.目前,人们对思想政治教育的政治性与文化性的认识有所差异,不能正确