论文部分内容阅读
单边轴承的低速竖直旋转装置在日常生活、工业生产和科学研究中有着广泛的应用。这类装置由于结构或功能限制,往往只有下端有机械轴承固定,而上端开放,这就使得转子运行时的振动成为一个不容忽视的问题,并由振动衍生出噪音、设备磨损等问题。本文针对这类转子振动问题,提出一种新型的转子定位控制系统。该系统由多个共用转子的弧形直线感应电机组成,通过直线感应电机定转子之间的法向力来对转子进行非接触式定位控制,以减小转子的振动;通过直线感应电机定转子之间的切向力来驱动转子转动。这种转子定位控制系统的基本思想与磁悬浮轴承或无轴承电机系统相同,都是通过对转子施加非接触的电磁力来控制转子位置。但是,传统的磁悬浮轴承主要研究的是高速水平转子,而对于低速竖直转子则研究较少。在低速竖直转子的运动中存在着许多特殊情况:首先,低速情形下,转子本身是一个不稳定的系统;其次,竖直情形下,转子的运动中将会呈现更为复杂的非线性动力学特性。这些特点使得竖直低速转子的定位控制原理变得更为复杂。另一方面,传统的无轴承电机方案,是通过在定子绕组中附加悬浮绕组来实现转子悬浮,原理、结构和工艺都比较复杂,而采用多个直线感应电机来进行转子定位控制,则可以省去附加绕组,使得电机结构简单、加工容易。因此,本文的研究既具有一定的理论难度,又具有一定的应用前景。本文首先提出了基于共用转子的多弧形直线电机的竖直转子定位控制系统的基本结构,并对构成控制系统各个主要模块的功能及数学模型进行了介绍,重点讨论了多直线电机结构的转子驱动机理。其次对控制系统的执行器——直线感应电机的解耦控制进行了讨论,提出了基于稳态性能的法向力和切向力解耦算法,将其推广到动态过程中。仿真结果显示,该算法基本实现了法向力和切向力的解耦,这使得本文可以把研究重点集中于采用法向力实现竖直转子的定位控制。在上述研究基础上,本文提出了基于陀螺效应原理的转子定位控制算法,并通过仿真将其与基于线性系统理论的极点配置控制算法效果进行了对比。对比结果表明,基于陀螺效应的转子定位算法具有较好的鲁棒性。在转子的运转过程中,各种不确定性和非线性特性都会对转子的定位控制产生不利影响。为了克服这些不确定性的影响,本文研究了基于名自适应控制理论的转子定位系统的控制策略,从理论上分析了自适应控制系统的输入状态稳定性问题,通过仿真考察了自适应增益对自适应控制系统的性能和效果。接下来,针对转子启动过程,探讨了在自转转速动态过程中转子的定位算法的有效性,通过仿真比较了在转子加速过程中各种定位算法的局限性和优劣,并提出了一种基于反馈线性化的转子定位算法,用以实现在加速过程中的可靠定位。最后,本文设计研制了基于dSPACE的转子定位控制实验台,以其为基础进行了定位控制策略的模拟实验,验证了基于陀螺效应和基于l1自适应控制理论的定位控制策略的有效性。实验结果表明,基于陀螺效应的定位控制策略能够明显减小竖直转子自转时主轴偏离竖直位置的偏角,而基于l1自适应控制理论的定位策略能够在此基础上进一步减小竖直转子主轴偏角。说明定位控制策略能够有效减小竖直转子转动时主轴偏离竖直位置的偏角。