【摘 要】
:
无线传感器网络(Wireless Sensor Networks,WSNs)由于其低能耗,低成本和无线传输而被广泛用于环境监测,智能家居,医疗保健,智能工厂等领域。但由于信号衰减,多径效应和同频干扰等原因,无线信号容易受损,导致丢包。现有研究中,(部分)重传技术需要消耗额外的能量,而前向纠错技术(Forward Error Correction,FEC)在数据包中添加了冗余字节,从而牺牲了网络吞吐
论文部分内容阅读
无线传感器网络(Wireless Sensor Networks,WSNs)由于其低能耗,低成本和无线传输而被广泛用于环境监测,智能家居,医疗保健,智能工厂等领域。但由于信号衰减,多径效应和同频干扰等原因,无线信号容易受损,导致丢包。现有研究中,(部分)重传技术需要消耗额外的能量,而前向纠错技术(Forward Error Correction,FEC)在数据包中添加了冗余字节,从而牺牲了网络吞吐量且使得时延增加。因此,如何在不增加能耗且不降低有效载荷的情况下提高网络性能仍然是一个具有挑战性的问题。IEEE 802.15.4标准协议是诸多无线技术的基础,如:Zig Bee、Wireless HART等。本文从IEEE 802.15.4协议物理层中伪随机序列的传输特性出发,挖掘了伪随机序列的出错模式,提出的三种数据包恢复算法对数据包接收成功率都有显著的提升。首先,本文通过Zig Bee节点和通用软件无线电外设(Universal Software Radio Peripheral,USRP)搭建了无线网络,并进行了大量的实验,挖掘了IEEE 802.15.4协议物理层中收到的原始伪随机序列的出错特性。根据数据包被损坏的程度,本文将收到的数据包分为了四类:完全匹配数据包、可容错数据包、间断错误数据包和连续错误数据包。在包含出错伪随机序列的数据包中,本文发现了三种显著的位错误模式:滞后位偏移、超前位偏移和位突变。本文进一步详细分析了不同出错数据包中存在的位错误模式。其次,根据这三种显著的位错误模式,本文提出了基于位错误模式的两种数据包恢复算法:离线恢复算法OffER和在线恢复算法On ER,从而可以直接恢复错误数据包而无需重传或在数据包中添加冗余字节。本文在室外空旷草坪上和室内模拟工业环境中,分别评估了这两种算法的效果,对数据包接收成功率的提升效果显著。最后,由于无线信号在传输过程中受到的影响非常复杂,难以建模分析,本文提出了基于神经网络的数据包恢复算法NNER来对数据包进行解码,从而恢复出错的数据包。在室外空旷草地上和室内模拟工业环境中的实验结果表明,NNER对数据包接收成功率的提升效果显著。
其他文献
在经济全球化,工业4.0及可持续发展的影响下,国内各个制造企业都面临着转型升级的巨大挑战,尤其是最近几年,汽车市场中新能源汽车、互联网汽车、以及无人驾驶汽车等很多新产品的出现,使得汽车的更新换代和产品升级周期明显缩短。所以,对于汽车制造企业来说,生产线以及生产线的物流调度需要满足柔性化生产,而汽车的底盘生产线,由于其工艺选装的组合类型多,对柔性化的需求更加迫切。自动导引小车(Automated-G
随着多智能体编队在救灾、军事、工业领域应用需求的快速增加,多智能体系统面临在各种不确定的复杂环境下实现编队控制的问题。目前针对障碍环境下多智能体编队控制问题已经有较多的研究工作和成果,但是主要针对较为简单的障碍环境。实际编队中地形复杂、局部环境未知等问题导致了多智能体协同编队控制中避障约束、编队约束的动态变化,如何在协同机制下建立具有动态预报和自适应能力的编队控制策略是亟待解决的关键问题。本文将在
创新科技与技术的蓬勃发展推动了第三次工业革命,其中信息通信技术的进步与发展表现突出。无线通信技术的不断提升以及无线设备的不断完善使得在工业自动化生产和管理现场中,使用无线设备和无线通信技术的范围越来越广。由此产生了由现代工业控制网络和无线通信网络构成的工业网络系统。尽管无线通信技术和设备可以部署到有线网络难以进入的区域,实现了无盲区覆盖以及低成本的无间断监控等有利于生产或管理现场的功能,但是与有线
叶片作为旋转机械最重要的部件,其振动状态的实时监测对旋转机械的安全运行非常重要。叶尖定时方法(blade tip timing,BTT)作为一种非接触式测量方法在旋转机械叶片振动监测中有着良好而广泛的应用,但由于其存在非均匀采样、欠采样等问题,对信号的重构造成了一定的困难。本文利用BTT信号频域上的稀疏性,提出了一种基于压缩感知的信号辨识方法,具体内容如下:1)基于旋转机械叶片振动理论和叶尖计时系
随着我国城市建设规模的不断扩大以及城市人口的快速增长,城市轨道交通的地位也变得愈发重要。在城市轨道交通客流运输过程中,存在许多不可测的外部因素。这些因素轻则导致列车延误,严重情况下甚至会产生连带反应从而使得整条线路的列车运行网瘫痪,给城市轨道交通的正常运转带来很大的阻碍。因此对延误列车进行运行调整具有相当重要的意义。城轨列车运行调整是一个复杂的组合优化问题,目前对于城轨列车运行调整的研究主要集中在
故障诊断系统是提高工业过程安全性、稳定性,减少因故障停机带来经济损失的一类重要技术。本文研究了基于有效特征表示与迁移学习的工业故障识别,采用不同的特征提取算法与故障识别算法相结合,利用目标任务与源任务的相似性,不同程度的优化了目标故障识别任务的准确率。本文主要的研究内容包括:基于深度自动编码器的特征提取与故障识别。该方法将深度自动编码器与多层网络分类器相结合,自动编码器能够有效地提取出非线性复杂工
随着工业机器人技术的发展,机器人已被广泛的应用于工业生产制造环节中,对于需要灵活部署、机器人操作不方便的生产场景,人机协作的生产模式是一种有效的提高生产效率的方式。因此,研究机器人在保障操作人员安全的前提下,如何在复杂多变的协作环境中进行避障规划,完成规定的生产任务具有重要意义。本文针对人机协作装配应用场景,围绕空间动态障碍物检测和机器人主动避障规划方法展开研究,具体研究内容包括以下四个方面:(1
鉴于建筑内消防设备需处于待工作状态,能实时了解动力情况的要求,论文实现了一种基于物联网的建筑消防动力设备监控系统。论文首先针对动力设备电源状态的在线测量要求,对供电状态测量方法进行分析研究,对交流信号有效值算法进行对比分析,提出一个多周期等间隔算法来实现设计中的电量交流有效值的采样测量,设计了相应的软件算法,并在计算机中进行了仿真验证。其次,为了实现对电量状态的实时监测,设计了一款以ARM微处理器
在强化学习的背景下,训练效率随状态空间的大小呈指数级衰减,尤其是在具有连续动作空间的机器人控制领域中,高维连续的状态空间和动作空间使得在真实环境下应用强化学习算法训练机器人学习实时控制策略变得困难。为了解决在高维连续搜索空间中数据利用率极低的问题,研究人员们尝试了很多方法,例如通过生成更多的好数据指导智能体学习等。但是如何设计易于优化、能够有效表达领域知识的状态空间表示一直是一个开放性的问题。得益
高光机是数控机床专用领域的分支,用于高精密、高光泽度要求的零部件加工,并以此得名。智能手机及手持终端的爆发式增长中,高光机是必须的生产设备,并由此得到快速、规模化的发展。目前高光机的国产化程度很高。然而在要求较高的细节加工上,仍存在着刀纹不均、表面质量不高的问题,这种问题在生产节奏提升时会放大,限制了生产效率。数控机床的加工过程是机械、电气控制相结合的复杂机电系统控制过程,涉及到材料学、力学、机械