【摘 要】
:
在自然界与现实生活中,纹理图像随处可见,研究人员对使用计算机合成纹理图像进行了深入研究,提出了很多纹理合成算法。在本文中,对于传统纹理合成算法以及基于卷积神经网络的纹理合成算法进行了研究与比较,发现了现有方法的不足之处:使用传统的纹理合成算法对于有的纹理种类不具有普适性,生成的纹理图像可能会模糊;使用现有的基于卷积神经网络的方法,由于现存方法的输入图像大小固定,网络结构固定,卷积之后需要将图像恢复
论文部分内容阅读
在自然界与现实生活中,纹理图像随处可见,研究人员对使用计算机合成纹理图像进行了深入研究,提出了很多纹理合成算法。在本文中,对于传统纹理合成算法以及基于卷积神经网络的纹理合成算法进行了研究与比较,发现了现有方法的不足之处:使用传统的纹理合成算法对于有的纹理种类不具有普适性,生成的纹理图像可能会模糊;使用现有的基于卷积神经网络的方法,由于现存方法的输入图像大小固定,网络结构固定,卷积之后需要将图像恢复成原始大小,或者使用Up Sampling扩大图像倍数,生成输入样本整数倍的图像,不能够生成多个尺度的纹理图像。因此,本文的研究动机便是利用卷积神经网络从给定样本合成多尺度的纹理图像。本文设计了一个基于卷积神经网络的纹理合成网络框架,这个框架包含了两个部分:第一个部分是纹理生成网络,第二个部分是损失函数计算网络。本文所构建的纹理生成网络模型是基于生成对抗网络(Generative Adversarial Networks,GAN),其中包括了生成器和鉴别器。纹理生成网络的结果能够从图像的内部扩展到周围,从而使得生成纹理图像的尺度扩大为样本的任意倍数大小。在纹理生成网络模型中,生成器使用的是具有空洞卷积(Dilation Layers)的神经网络模型,鉴别器使用的是Patch GAN网络模型。在损失函数计算网络中,将改进的VGG-19作为了主要的模型。同时,本文设计了特征图最近邻匹配算法来优化损失函数,该算法称为swap算法。Swap算法可以在纹理图像特征图上进行运算,并在原始图像和生成图像之间进行纹理特征的匹配,最后再将经过最近邻匹配的特征图应用到损失函数的计算中。本文的方法在Describing Textures in the Wild(DTD)与Places365数据集上进行了实验。与其他现有的基于卷积神经网络的纹理合成方法相比,本文的方法在生成多尺度纹理图像上优于其他方法,并且也通过实验证明了本文方法的有效性。
其他文献
今年的高考结束后,每个省的成绩陆续公布,有记者采访了一些优秀学子,发现了一个现象,这些优秀学子们的家庭教育方式都有相似的地方。自高考结束以来,最火热的"学霸网红"莫过于被清华大学录取的武亦姝了,关于她的报道,点击率非常高。
超分辨率技术能够在硬件设备性能受限情况下,利用算法提高图像分辨率,恢复图像细节,获取高质量的图像。基于卷积神经网络的深度学习方法能有效提取图像内部特征,学习低分辨率图像与高分辨率图像之间的映射关系,较好地实现超分辨率重建。本文基于卷积神经网络,针对现阶段超分辨网络的效率问题进行了一系列研究,主要工作如下:针对目前基于深度学习的超分辨网络模型较深,参数量、运算量较大,无法适应于实际场景等问题。本文在
帕金森疾病(Parkinson’s Disease,PD)是由基底核网络中多巴胺的缺失导致的,会产生基底核网络异常的β振荡现象。多巴胺的缺失首先影响了纹状体的输出,继而影响了整个基底核网络的正常的生理功能。纹状体包括快速放电中间神经元(Fast Spiking Interneuron,FSI)和中间棘突神经元(Medium Spiny Neuron,MSN)两种神经元。深度脑刺激是目前治疗PD的有
近年来,移动机器人在民用、军用、商用等各个领域已经有着越来越广泛的应用。其中,由于全方位移动机器人可以独立且同时进行平移和旋转运动,所以更适合于对机动性要求高的狭窄空间,如工厂、仓库和医院。因此,如何实现全方位移动机器人精确、可靠、稳定的轨迹追踪控制已经成为机器人领域研究的热点之一。本文以全方位移动机器人为研究对象,针对机器人建模和标定参数过程复杂耗时、机器人模型存在不确定性以及存在外部扰动的问题
轴系传动作为机械装置的主要动力输出形式之一,主要通过动力轴为机械装置提供扭矩,驱动设备正常工作。整个动力系统的状态和工作特性都可以通过扭矩来反映,同时可以对机械设备的整体性能做出评价,因此对于传动轴的扭矩传感就显得尤为重要。扭矩传感的常规方法包括电阻应变片法、钻孔法、压电式测量法、光纤光栅法、超声检测法和磁弹效应法等。本文对磁巴克豪森扭矩传感技术的原理进行了详尽的论述,然后提出了一种基于磁巴克豪森
脑-机接口(Brain-Computer Interface,BCI)是一种不依赖于外围神经和肌肉组织,通过采集和分析脑电波来实现人与外部环境直接交互的技术。BCI已在医学诊断、残疾辅助、智能家居和生活娱乐等多个领域中得到了广泛应用。近年来,采用柔和刺激范式来获取脑电信号(Electroencephalograph,EEG)的基于稳态运动视觉诱发电位(Steady State Motion Vis
在传统制造业向智能制造转变的大背景下,作为智能制造中重要载体的工业机器人对提高工业自动化程度、引领高新技术发展、加快生产变革将起到重要作用。作为机器人应用领域的一个分支,机器人喷涂已经得到了广泛应用,也大大提高了喷涂行业的生产效率与产品质量。对于大型复杂工件曲面的喷涂轨迹规划研究有较高的现实意义。本文结合歌博铸造(天津)风能发电机组铸件机器人自动喷漆项目,重点研究了复杂铸件曲面喷涂的轨迹规划方法。
随着制造行业的迅速发展,精密加工技术的与时俱进变得十分的重要,精密机床的高精度要求更是重要的一环。而机床结构热变形是影响精密机床精度的主要因素之一。目前,对于机床结构热变形主动控制方法的研究相对较少,因此,机床结构热变形的有效抑制或主动控制问题变得难以解决。本文综合考虑上述问题,基于多回路差异化主动温控系统,利用主动温控装置对机床结构热变形进行主动控制。并通过ANSYS热特性仿真分析以及与实验进行
在传统家具生产行业收入下滑的背景下,定制家具行业以超30%的增速飞快发展,生产企业超过上万家,其中90%均属于中小型企业,各工厂虽然引进了先进的生产设备,但在排产方面仍处于半自动状态,导致排产效率低、原材料浪费严重,并且还增加了人力成本,而原材料及人力成本是除生产机器成本外最重要的成本投入,所以排产排样算法的研究,对于降低成本以及提高排产效率具有重要意义。在排产方面,通过设计排产原则,并与数据库结
随着互联网技术与数字经济的发展,基于深度学习技术处理网络结构数据的网络表示学习方法吸引了学术界和工业界的共同关注,其旨在将网络中的节点表示为低维、稠密的实值向量,并有效地保留网络结构及其他有价值信息。现有的大多数网络表示学习方法在学习节点表示时很少考虑网络的属性信息,而网络属性信息往往蕴含着非常有价值的信息。知识图谱是基于图结构的数据模型,其能够自然刻画现实世界中实体之间广泛联系的网络结构数据,能