稀土掺杂多模发光材料设计及其在防伪中的应用

来源 :西北大学 | 被引量 : 0次 | 上传用户:cxtctb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面对造假带来的巨大经济损失和安全隐患,对新型防伪材料的需求与日俱增。发光防伪材料隐蔽性好、发光颜色丰富可调且防伪效果直观,受到研究者们的广泛关注,但传统单模发光防伪材料只能在单一激发方式下产生一种颜色的发光,易于被复制。而多模发光防伪材料的设计和开发是解决这一问题的重要途径,利用其在不同激发模式下的不同颜色发光可以实现直观、高效的防伪。其中,稀土掺杂发光材料具有稳定性好,可同时被紫外光和红外光激发,色纯度高,波长覆盖可见光波段等优点,是实现高效多模发光防伪的理想选择,在发光防伪领域具有广阔的应用前景。本论文以开发新型多模发光防伪材料、实现不同模式下差异明显的发光颜色为目的设计合成了三种稀土掺杂发光材料,并对其结构、发光性能及过程和在防伪中的应用进行了探究,主要研究内容包含以下三个部分:(1)通过水热法合成了GdF3:Yb3+,Tm3+,Eu3+双模发光防伪材料,利用其在365nm和980 nm激发下的橘红色和蓝紫色发光实现了防伪应用,并通过荧光光谱和荧光寿命谱对离子间存在的能量传递过程进行了探究,给出了可能的上下转换发光过程。通过丝网印刷技术制作防伪图样,实现双模发光防伪应用。(2)通过高温固相法合成了SrBi4Ti4O15:Er3+双模发光防伪材料,利用其在980 nm和1550 nm激发下的绿色和红色发光实现防伪应用,并对其中Er3+不同的上转换多光子过程进行了探究。利用1550 nm激发下掺杂浓度为0.5%和3.0%的样品发光颜色分别为橙色和红色这一特性实现了对重要信息的隐藏,并对导致这一发光颜色变化的发光过程进行了分析。通过对目前研究较少的1550 nm激发发光防伪过程进行探究,为开发新型多模发光防伪材料提供了新的思路。(3)通过高温固相法合成了Ba2GdTaO6:Mn4+,Er3+三模发光防伪材料,利用该材料在365 nm、980 nm和1550 nm光源激发下的深红色、黄绿色和黄色发光实现了防伪应用。通过荧光光谱和荧光寿命谱对其在红外和紫外激发下的Er3+、Mn4+掺杂浓度变化所引起的发光颜色改变以及离子间的能量传递过程进行了探究,给出了可能的上下转换发光过程。通过丝网印刷技术制作防伪图样,在前两章的基础上进一步实现了安全系数更高的三模发光防伪。
其他文献
褐煤储量约占煤炭总量13%,由于“三高一低”的特点在现有热解工艺技术下仍不能被大规模应用。因此,有必要探究褐煤的热解特性,从而为煤炭工艺技术的设计与开发提供数据参考。本文以鄂尔多斯褐煤为研究对象,首先对褐煤分别进行水热预处理、溶剂溶胀预处理以及离子负载预处理,然后采用流化床对原煤热解以确定最佳热解温度,最后在最佳温度下进行预处理煤样的热解实验。热解产物由热重分析仪(TG)、傅里叶变换红外光谱仪(F
介电弹性体(DE)材料是一种能够在电场的作用下发生形变,并且撤销电场后恢复形状来实现电能和机械能转换的柔性智能材料。凭借其良好的柔韧性、轻重量、大电致形变及易于加工等特点,未来DE材料将会在航空航天、仿生学、医疗康复、机器人和光学等多个领域实现应用。但是DE材料要获得大的驱动形变,往往需要很高的驱动电压,所以DE材料在商业上的应用仍然处于一个不成熟的阶段。因此,制备出一种在低驱动电压下获得大驱动力
本文以美味猕猴桃‘徐香’(Actinidia deliciosa cv.‘Xuxiang’)为试材,探究常温贮藏过程中,0.05 mmol L-1褪黑素(MT)处理对果实后熟衰老进程的调控及其生理机制,以期为猕猴桃果实采后贮藏保鲜提供理论依据和技术支撑。主要研究结果如下:1.研究了MT处理对猕猴桃果实后熟衰老进程的影响。结果显示,MT处理抑制了果实的呼吸速率,保持了果实较低的失重率和可溶性固性物含
光伏领域在近年来迎来了蓬勃的发展,然而现有的光伏材料都不可避免的存在一些问题,学者们一方面对已有光伏材料进行改进,同时又致力于新光伏材料的探索研究。本论文利用第一性原理系统的研究了Mg3NF3同系列化合物A3MX3(A=Mg,Ca,Sr,Ba;M=N,P,As,Sb;X=F,Cl,Br,I)的光电性能,从带隙、理论光电转换效率(SLME)以及稳定性三个筛选条件出发筛选出了3种具有优异光伏性能且稳定
随着吸波材料的应用环境变得日趋复杂,单一吸波体材料的研究和开发已无法满足实际的应用。利用具有两种或两种以上互补或增强性质的材料构建多异质界面复合材料已成为吸波领域的热门研究课题。我们将磁性双金属氧化物与金属有机框架复合并研究其在不同退火温度下异质界面的重构,实现多组分、多层次的复合异质界面材料的制备。这种多组分、多层次结构的设计策略是轻量化、宽频带吸波材料的发展定位。本文通过水热法结合退火工艺构筑
食醋作为重要调味品,在烹调、保健、饮料、化工等方面具有重要作用。食醋生产主要是利用专性好氧的醋酸菌表达合成的发酵乙醇脱氢酶和乙醛脱氢酶,将粮食/水果发酵产生的酒精氧化为醋酸,并形成特殊风味。发酵所需原料中的碳源在发酵前期被转化为乙醇,乙醇的含量过多时,严重影响醋酸菌细胞的生长繁殖和醋酸产率,并对食醋的风味产生不良影响并导致生产成本的增加。因此,选育具有乙醇耐受性的醋酸菌菌株对生产食醋生产具有重要意
本文以农作物果实颗粒为研究对象,对干燥和深加工过程中不同条件下颗粒特性进行了实验研究。选择小麦、水稻、黄豆和咖啡豆等多种农作物果实颗粒,对不同风载荷条件下颗粒流动特性进行了实验研究。选择高附加值经济作物咖啡豆为例,对其在应用最广的滚筒烘焙条件下颗粒物理化学反应特性进行了实验研究和分析。实验研究结果显示:四种结构的分布器条件下,直径100 mm装置中颗粒运动状态分为旋涡式和喷泉式,分布器中心有颗粒堆
近年来,开发针对特定形态定制材料结构的方法一直是材料科学家的重要目标之一。空心结构材料由于具有较大的比表面积、丰富有效的存储位置、较短的传输路径和独特的内部空心腔被广泛研究。目前报道中的氧化亚锡(SnO)纳米材料几乎都显示实心结构,例如带、片、软盘和网状。因此以一种便捷的方法来制备形状可控的空心SnO,并制造出具有更低检测极限、更短响应时间和更稳定的传感器,仍然是一个巨大的挑战。本文采用溶剂热方法
石墨烯由于阻抗匹配特性较差且易于片层堆叠,很难直接用作电磁波吸收材料,为了发挥石墨烯优异的性能,对其改性优化一直是吸波领域的研究热点。金属有机框架(MOF)衍生物既存在碳包覆磁性金属纳米颗粒的结构单元又具有中空多孔结构,是优异的磁性吸波材料。本文首先制备了MOF衍生物,然后通过水热法构筑了三维结构的石墨烯泡沫(GF),将其分别与两种MOF衍生物复合后,较系统地研究了复合材料的吸波性能,所做工作一方
近年来,利用物联网进行无线感测受到人们的关注。基于RFID信号的液体材料识别可以帮助识别日常食品(如牛奶)是否已经过期;无需打开瓶子,细粒度的物质感测就可以判断一瓶昂贵的香水是真品还是假品,应用广泛。然而现有的材质识别方法大多只能识别液体的类别和成分,大多无法识别出固体材质的类别。对于固体材质的识别具有广阔的应用前景,诸如人机交互、工业自动化、地质勘测等诸多领域。现有固体材质识别方法有着操作复杂且