论文部分内容阅读
新陈代谢是生物的基本特征之一,物质代谢过程中伴随着能量的流动,在此基础上产生信息交流。能量代谢作为生命过程中必不可少的一个环节,也是动物生活史的重要特征之一,而能量收支的生理学调节机制往往决定了动物能量利用模式和生活史特征的差异。黑颈长尾雉(Syrmaticus humiae)和白颈长尾雉(Syrmaticus ellioti)属鸡形目、雉科、长尾雉属易危鸟类,均被列为国际濒危物种贸易公约附录I,中国也将其列为国家一级保护动物。一方面,本研究通过对笼养黑颈长尾雉和白颈长尾雉的代谢产热特征及体温调节的研究和分析,力图阐明黑颈长尾雉和白颈长尾雉的代谢产热、体温调节与环境温度适应性变化以及生活史特征之间的关系,研究结果有助于人们对能量代谢的理解;另一方面,通过对不同日龄组黑颈长尾雉和白颈长尾雉的食物能量代谢比较研究,有助于系统地了解长尾雉属鸟类对食物的利用情况,同时为我国雉类的开发、保护以及人工饲养提供借鉴资料。作者于2005年10月-2006年9月,以自动补水法采用封闭式流体压力呼吸测定仪研究了黑颈长尾雉和白颈长尾雉基础代谢率(BMR)、热传导及其体温调节;以食物平衡法测定了不同日龄组黑颈长尾雉和白颈长尾雉四个不同季节的食物利用情况。研究结果如下:1.黑颈长尾雉的热中性区(TNZ)为23– 30℃,其基础代谢率为1. 36±0. 84 ml O2 /( g?h ),是体重预期值的97 %;而白颈长尾雉的热中性区(TNZ)为23– 28℃,其基础代谢率(BMR)为2. 06±0. 14 ml O2 /(g?h ),是体重预期值的108 %。这说明,黑颈长尾雉的上临界温度高于白颈长尾雉,而基础代谢率(BMR)却比白颈长尾雉低。2.在5– 28℃时,黑颈长尾雉和白颈长尾雉的热传导最低且基本保持恒定,分别为0. 12±0. 01 mlO2 /(g?h?℃)和0. 17±0. 01 mlO2 / (g?h?℃),分别是体重预期值的119 %和121 %。这表明,在5– 28℃时,黑颈长尾雉的热传导低于白颈长尾雉。3.在环境温度为5– 35℃的范围内,黑颈长尾雉和白颈长尾雉的体温基本保持不变,分别为40. 44±0. 08℃和40. 34±0. 09℃,这基本符合鸡形目鸟类体温特点。4.黑颈长尾雉和白颈长尾雉的基本生物学特征为:较高的体温,热传导和上临界温度,较宽的热中性区和较低的代谢率,符合南方鸟类的代谢特征。5. 3-4年黑颈长尾雉和白颈长尾雉四个季节的代谢能(Y)与环境温度(T)的回归方程分别为:Y = 430. 976– 7. 461T,Y = 457. 603– 6. 593T;食物利用率分别为:86. 77±0. 54 %,85. 44±0. 54 %。这说明,温度每下降1 oC ,3-4年成体黑颈长尾雉和白颈长尾雉每只每天代谢能(Y)分别相应增加7. 461 kJ和6. 593 kJ。食物利用率方面,3-4年成体黑颈长尾雉高于白颈长尾雉。6. 150日龄黑颈长尾雉四个季节的代谢能(Y)与环境温度(T)的回归方程分别为:Y = 557. 771– 8. 905T,Y = 489. 569– 7. 248T;食物利用率分别为:85. 26±0. 40 %,84. 14±0. 55 %。这说明,温度每下降1 oC ,150日龄黑颈长尾雉和白颈长尾雉每只每天代谢能(Y)分别相应增加8. 905 kJ和7. 248 kJ。食物利用率方面,150日龄黑颈长尾雉高于白颈长尾雉。7.相同环境温度下,3-4年黑颈长尾雉代谢能低于150日龄黑颈长尾雉,而食物利用率却比150日龄黑颈长尾雉高;同样,3-4年白颈长尾雉代谢能低于150日龄白颈长尾雉,食物利用率却比150日龄白颈长尾雉高。