【摘 要】
:
本文借助于区域分解思想并基于自然边界归化理论,以一类各向异性常系数椭圆方程为例,研究此类无界区域问题基于自然边界归化的区域分解算法.具体内容如下.
第一部分研究
论文部分内容阅读
本文借助于区域分解思想并基于自然边界归化理论,以一类各向异性常系数椭圆方程为例,研究此类无界区域问题基于自然边界归化的区域分解算法.具体内容如下.
第一部分研究一类二维各向异性外问题的重叠型区域分解算法.基于自然边界归化,对各向异性外问题提出一种Schwarz交替算法,并给出其离散形式,分析了算法的收敛性,给出了收敛性结果.通过数值试验验证该方法的可行性和有效性.
第二部分研究一类二维各向异性外问题的非重叠型区域分解算法.基于自然边界归化,对各向异性外问题提出一种D-N交替算法,研究算法的收敛性及它与Richardson迭代法的等价性,给出了离散型D-N交替算法,详细分析了算法中松弛因子的选取,并给出了数值试验.
其他文献
在这篇博士后出站报告中,我们主要研究满足一定曲率维数条件的度量测度空间的乘积曲率性质和局部到整体性质以及空间形式中的常平均曲率超曲面。
第一章,我们首先回顾Lott
在新的历史时期,《中国共产党党内监督条例(试行)》(以下简称《条例》)的颁布和贯彻执行,正是我党坚持党要管党、从严治党和依法治党的具体体现,从而保证党的各级组织、广大
假设f是紧黎曼流形M上的C1微分同胚,考虑一个紧不变集Λ,如果f在Λ上的控制分解此处公式省略:满足此处公式省略:,并且dim Ei=1(1≤i≤l)。则f是渐近熵可扩的,并且其拓扑熵是关
本文对双线性时间序列模型进行研究,探讨该模型下参数估计,交点估计以及基于变点的异常点挖掘问题,双线性时间序列模型通过双线性项对ARMA模型进行推广,形式上虽然比较简单,但问题
本文主要研究滤子方法在非线性约束优化问题中的应用.滤子方法最早是由Fletcher和Leyffer[49]提出的.该方法不涉及罚参数的选取,从而避免了罚函数方法中的不足.由于其良好的
在解析函数理论中,对于一般的解析函数理论已经比较成熟,为了扩展解析函数理论,本文研究了一种新的解析函数——单位根集合上的解析函数。在文献[1]中,作者给出了单位根集上的解
图的k-距离染色的初形最初由F.Kramer和H.Kramer在文献[2,3]中提出,后来被T.R.Jensen和B.Toft在文献[18]中表述为k-距离染色,即对于任意的正整数k,图G的k-距离染色是指颜色{1
针对两类晶格材料模型(参考节点分别为q=3和q=4),设计了两种预处理方法,一种是以块对角逆为预条件子的共轭梯度法(BPCG),另一种是以块下三角逆为预条件子的PGMRES方法。数值
本文利用自然边界归化原理,研究凹型区域外问题的人工边界条件方法.
第一部分研究无穷凹型区域椭圆边值问题人工边界条件方法.利用自然边界归化原理,获得人工边界条件.
对著名算术函数性质的研究一直是解析数论中非常重要的课题,但是由于许多问题本身的困难性,至今得到的结果仍不是很多,所以对这些问题及其推广形式进行深入地研究仍然是有意