论文部分内容阅读
差分进化算法是一种基于个体差异的并行随机搜索进化算法,具有结构简单、控制参数少、全局搜索能力强等优点,已被应用于诸多领域。但是差分进化算法仍存在诸如容易陷入局部最优、进化停滞、不能求解多目标优化问题等缺点,限制了其性能的发挥,阻碍了其应用的推广。因此,对差分进化算法的改进研究具有重要的理论研究意义与实际应用价值。本文在对差分进化算法进行深入研究的基础上,针对其存在的缺点提出了三种改进算法,并将其应用于河南某铝厂“1+4”铝热连轧线的轧制力预报和负荷分配优化中。本文的主要研究内容如下:(1)针对标准差分进化算法变异策略和控制参数固定的问题,提出了一种基于指数平滑法和混沌映射的自适应差分进化算法(ECADE)。ECADE算法根据策略候选池中每个变异策略在当前产生更好个体的成功率,使用指数平滑法预测下一代的成功概率,并使用轮盘赌选择法为下一代个体选择变异策略。此外,ECADE算法使用能平衡算法开发和探索能力的函数和Logistic映射生成控制参数值,从而实现控制参数自适应。经标准测试函数验证,ECADE算法具有收敛速度快、收敛精度高、探索和开发能力均衡等优点。(2)针对如何提高初始种群多样性的问题,提出了一种基于对称拉丁超立方体设计的自适应差分进化算法(SLADE)。SLADE算法采用对称拉丁超立方体设计(SLHD)技术初始化种群,并根据一个较大概率从先前产生更好个体的策略列表或策略候选池中为个体随机选择变异策略。此外,SLADE算法引入柯西分布和正态分布生成控制参数值,并且根据产生更好个体的控制参数值进行自适应。实验结果表明SLADE算法较其他算法具有更强的寻优能力,并且SLHD技术的引入提高了SLADE算法的性能。(3)针对如何实现差分进化算法求解多目标优化问题,提出了一种基于角度邻域的多目标差分进化算法(ANMODE)。ANMODE算法在选择操作中引入了弱支配的概念,实现了对多目标优化问题的求解。角度邻域的引入使得变异操作可以在邻域内进行,保证了个体的进化方向。此外,ANMODE算法的外部存档维护机制对于改善Pareto前沿近似解集的分布性也起到了关键作用。实验结果表明ANMODE算法求解到的Pareto前沿近似解集具有良好的收敛性和分布性,性能明显优于对比算法。(4)针对如何减少传统轧制力模型误差的问题,提出了一种基于SLADE的BP神经网络轧制力预报模型(S-BP)。该模型使用SLADE算法优化BP神经网络,从而提高轧制力的预报精度。此外,为了增强S-BP模型的抗干扰能力,在S-BP模型的基础上引入了模型自学习,提高了轧制力预报的稳定性。实验结果表明S-BP模型的轧制力预报精度明显高于传统轧制力模型和BP神经网络,模型自学习也有效地改善了S-BP模型的鲁棒性。(5)针对如何避免精轧机组负荷分配不合理及打滑的问题,使用ECADE算法、SLADE算法和ANMODE算法优化铝热连轧的负荷分配。将负荷分配优化分别作为单目标和多目标优化问题,使用上述改进算法针对不同目标函数进行优化。实验结果表明优化后的负荷分配方案减轻了精轧机组的打滑问题,并且平衡了各机架负荷,改善了轧件板形,对实际生产有着重要的指导作用。