【摘 要】
:
超级电容器作为一种广泛投入实际应用中的新型储能器件,在与传统电容器和二次离子电池的竞争中凭借其特有的优势脱颖而出。从其基础上发展而来的混合离子电容器不仅在一定程度上继承了超级电容器的高功率密度和长循环寿命,还拥有了高于超级电容器的能量密度。无论是前者还是后者,电极材料在其中都扮演着极为重要的角色。本论文的主要工作聚焦于纺丝碳纤维及其复合物的孔结构设计以及在以上两种电容器中的应用。具体工作内容如下:
论文部分内容阅读
超级电容器作为一种广泛投入实际应用中的新型储能器件,在与传统电容器和二次离子电池的竞争中凭借其特有的优势脱颖而出。从其基础上发展而来的混合离子电容器不仅在一定程度上继承了超级电容器的高功率密度和长循环寿命,还拥有了高于超级电容器的能量密度。无论是前者还是后者,电极材料在其中都扮演着极为重要的角色。本论文的主要工作聚焦于纺丝碳纤维及其复合物的孔结构设计以及在以上两种电容器中的应用。具体工作内容如下:1.柔性超级电容器的发展迫切需要开发具有良好柔韧性和高比表面积的电极材料。通过静电纺丝技术获得的碳纤维膜(CFMs)由于其一维纤维结构而具有用作柔性电极的可能性。然而原始PAN基纤维的孔隙率一般不高,需要使用适当的方法对其进行造孔以及孔分布的设计。在本文中,通过将CFMs浸渍KOH溶液并进行活化处理,使得CFMs的活化更加均匀,避免了局部过度活化对碳纤维膜结构的破坏。活化CFMs(ACFMs)的比表面积可增加到2408 m2g-1,并表现出优良的机械柔韧性。研究表明,优化之后的ACFMs在水性电解质中能够提供289.2 F g-1的比电容,并且在中性电解质中的能量密度高达14.8 Wh kg-1。此外,ACFMs在柔性固态对称超级电容器中也表现出出色的电化学性能,使其在可穿戴,可折叠和便携式电子设备的储能应用中具有巨大潜力。2.钾离子混合电容器因钾资源丰富且成本低正成为电容器系统的重要发展方向。然而,开发高性能的负极储钾材料仍然是一个亟待解决的问题。本部分,我们设计了碳纤维(CNFs)包裹的空心MoS2球壳结构(H-MoS2@CNFs),其中MoS2的空心结构缩短了钾离子的传输路径,优化了电极与电解液间的接触。CNFs包覆缓解了MoS2的体积膨胀,并为电子的传输提供了快速通道。当作为钾离子电池(PIB)负极时,H-MoS2@CNFs在0.1 A g-1下经过100个循环后具有366.1 mAh g-1的可逆容量,甚至在10 A g-1时仍有184.7 mA g-1的可逆容量,表现出高容量和高倍率性能。此外,由于其可用作制备柔性独立式电极,避免了粘结剂和导电剂对电极质量的影响,从而组装的H-MoS2@CNFs//ACFMs钾离子混合电容器(PIHCs)在398 W kg-1的功率密度下显示出180.6 Wh kg-1的高能量密度,为二维材料在PIHCs中的开发提供了可靠的依据。
其他文献
能源危机和环境污染制约着传统汽车的发展,电动汽车作为解决这一问题的有效途径,近年来得到了迅速发展。储能系统是电动汽车的关键技术之一,也是电动汽车发展的最大瓶颈。锂电池是电动汽车中应用最广泛的储能元件,但受限于当前的技术水平,锂电池作为单能量源的电动汽车性能难以满足车辆的续驶里程及动力性能要求。太阳能在使用中安全、清洁.、无污染且成本较低,超级电容具有功率密度高、充放电速度快、循环寿命长等优点,如果
汽车悬架系统是汽车的重要减振部件,其中主动悬架系统同被动悬架以及半主动悬架系统相比更加灵活且有效,因此主动悬架系统得到了国内外学者广泛而深入的研究。然而在大多数文献中,对主动悬架控制器的设计往往是基于所建立的线性或非线性模型来进行的。事实上悬架系统是一个典型的非线性系统,且悬架系统在实际运作过程中,其悬架参数会在一定范围内变化,这些参数的不确定性会影响所设计控制器的性能。因此针对主动悬架控制器设计
环氧丙烷(PO)作为一种重要的有机化工原料,其绿色合成工艺受到研究者的广泛关注。钛硅分子筛(TS-1)/H2O2催化体系中的丙烯液相环氧化与Ag(Au)/TS-1/H2/O2催化体系中的丙烯气相环氧化是目前极具前景且符合绿色化学要求的两种PO生产工艺。前者虽已实现工业化,但仍存在TS-1催化剂孔径小、传质阻力大等问题;后者仍处于实验室研究阶段,对该类催化剂的开发及反应过程的系统研究是非常有必要的。
心血管疾病是导致人类死亡的罪魁祸首,全球每年因其而死的人数达1500万,已经严重威胁到人类的生命健康。心血管疾病发作的同时,常常会伴有心律失常现象的出现。心血管综合征中的心律失常是一种比较常见的病理现象,但是致命的心律失常却不常见。为了捕获这些不常见的致命现象,心律失常的实时检测显得尤为重要。通过心电图可以判断心搏是否正常,进而预防和诊断心血管疾病。随着健康生活理念的进一步普及,人们对心脏类疾病愈
随着网购的日益发展,电子商务已然成为了社会经济中新的增长极。互联网和实体经济深度融合,也使得越来越多的企业纷纷自建电商直销渠道,形成线上与线下双渠道(Dual-channel)融合发展的趋势。如今,各种突发紧急事件频繁发生,社会公众对企业社会责任(Corporate Social Responsibility,CSR)的关注持续升温,在需求扰动(Demand Disruptions)情形下研究考虑
金属零件的快速制造是快速成型技术的重要目标之一,同时也是当前快速成型领域的一大研究热点。传统的快速成型技术如EBSM技术、SLS技术和SLM技术等发展成熟,但成本较高且一般需要后处理工艺。电铸技术虽成本较低但沉积速率低且沉积质量差。射流电沉积技术是近年来新出现的一种电镀技术,具有成本低、选择性沉积、沉积速度快及沉积精度高等优点,但沉积质量和沉积速率仍有待提高,而引入摩擦辅助则可有效解决这一问题。因
近年来,含羟基异戊烯基官能团的黄酮类化合物在多项工作中被报道,此类化合物大多存在着广泛的药用活性。2016年,天然产物Sanjuanolide被Shaffer等人从菊科植物Dalea frutescens中提取得到,其新颖的结构特点和良好的抗癌活性引起了我们的关注。Sanjuanolide是一类典型的羟基异戊烯基黄酮类天然产物,具有特殊的α,β-不饱和结构单元,分子结构相对简单且存在着新颖的羟基异
分子基磁性材料(Molecule-Based Magnetic Materials)是一类使用化学的合成方法将顺磁离子(包括过渡金属离子和稀土金属离子)或者抗磁性有机配体以及自由基以自组装的方式通过配位键连接而形成的具有磁学物理特征的分子固体材料。与传统的磁性材料相比,这类材料具有结构有序可控、密度小、不导电、透光性好、易复合、易加工等特点,使其在航空航天材料、存储材料、微波材料、光磁电磁材料等领
绿色开采是矿业可持续发展的时代要求,胶凝材料的改革是推动充填采矿技术大规模应用的关键环节。针对莱州某金矿充填体早期强度低、水泥耗量大、充填成本高等技术难题,以充填体早期力学性能为切入点,结合市场调研、理论分析、室内试验和机理探讨等手段,开展矿渣基充填复合材料配比优化及水化机理研究,研制低成本、早强型矿渣基充填复合材料,探明充填胶凝材料最优配比,围绕宏观尺度和微观尺度揭示充填体早期力学性能的响应机制
铜合金零件工作过程中受摩擦磨损、海水腐蚀等作用,尺寸出现缺失而失效,如果处理不当会污染环境,同时造成资源的巨大浪费。为提高材料利用率,实现对受损黄铜合金零件的再制造,采用CMT技术在C35300黄铜表面制备了SG-Cu Al8Ni6镍铝青铜合金熔覆层。同时为寻求CMT增材制造最优工艺参数,获得综合性能优良的修复层,本文研究了不同工艺参数对单层单道熔覆层宏观形貌、微观组织及硬度的影响,同时研究了层间