线性哈密顿算子自伴扩张的新描述

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:zhuhaiyongjiewang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
哈密顿(Hamilton)原理在数理科学,生命科学以及其它的许多科学领域,特别是天体力学,量子力学,航天科学以及生物工程中的许多数学模型都是以哈密顿系统的形式出现的.由此可见,线性Hamilton系统谱理论不仅具有理论意义,而且是解决实际问题的重要工具.微分算子自伴性判别与自伴域的刻画问题也越来越引起许多学者的关注.曹之江教授利用解给出了极限圆型时二阶和高阶微分算子自伴域一种直接而完全的描述(见[1,2]),孙炯教授利用解给出了具有中间亏指数的高阶微分算子自伴域一种直接而完全的描述(见[3]);魏广生教授在其对称算子自伴域的一种新描述(见[4])中曾指出,对亏指数为(m,m)的闭对称算子T0,Im(T0*y,y)总可以表示成秩为2m的二次型,并且利用这一特征得到T0自伴域的一种新的完全解析描述.本文所研究的就是线性哈密顿系统自伴扩张的完全解析描述.根据内容本文分为以下三章:第一章绪论,主要介绍了本文的研究课题.第二章在本章中,我们主要讨论了下面的线性哈密顿系统Jy’(t)=(λW(t)+Q(t))y(t),t∈I,I=[a,b), (2.1.1λ)其中a是正则端点,b是奇异端点(即b=+∞;或者W(t),Q(t)至少有一个函数在b点附近不可积)W(t),Q(t)是在I上局部可积的2n×2n阶厄米特矩阵,J是辛矩阵,即In是n×n单位阵,W(t)≥0是半正定的权函数.对亏指数为(d,d)的最小哈密顿算子h,Im(h*’y,y)总可以表示成秩为2d的二次型,利用这一特征得到了h的自伴扩张域的一种新的完全描述方法,将其应用到线性哈密顿算子h上,直接可得到它的自伴域的解析描述.第三章在第二章的基础之上,本章应用奇异线性哈密顿系统自伴扩张的新的描述方法,得到多区间直和空间上奇异线性哈密顿系统的自伴扩张的完全解析描述.
其他文献
城市化、工业化发展带来巨大经济效益的背后是我国部分传统村落在此过程中日渐衰亡的严峻形势。为拯救这笔珍贵的人类文化遗产,2012年以来,国家颁布了多项传统村落保护政策和措施,但是传统村落如何转型、向何处转型仍是待解的难题。屿北村是浙江省楠溪江上游的一个典型传统村落,本文以其为个案、采用社会结构理论作为分析基础,研究了这个村落从建村至今经历的两次大的转型,目的是探讨传统村落的转型发展与其社会结构的关系
本文共分三节.第一节为本文的引言,同时给出了主要定理:设Ω是R2中的光滑有界区域,并且u∈C4(Ω)∩C2(Ω),u是椭圆方程Δu=2u2|▽u|2在Ω中的一个解,假定对于x∈Ω,有|▽u|≠0,u的水平集关于▽u是严格凸的,则函数ψ=k及φ=e-2uk在(?)Ω达到它们的极小值.其中,k为水平集的曲率.第二节为本文的预备知识.介绍了经典微分几何中水平集凸性的一些基本概念,给出了定理证明过程中所涉
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为G2上的一个度量.给定一个ε>0,存在一个δ>0使得f:G1→G2为一个映射且对所有的x,y∈G1均有d(f(x*y).f(x)·f(y))<δ是否存在一个同态g:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε(?)1941年,D. H. H
文章简要分析了下游防冲槽冲坑形成原因,利用走航式ADCP(声学多普勒流速剖面仪)断面观测技术确定冲坑位置及大小及复核抛石效果。此技术具有操作简单、精度较高和绘制图形快等特点,为前期防冲槽的维修方案的制定和后期检验加固维修效果提供了可靠的数据和图像支持。
子范畴的反变有限性与表示论,Torsion理论和倾斜理论都有着非常紧密的关系.本文的主要目的是讨论p∞(A)以及Gpd∞(A)的反变有限性.本文在讨论了对偶扩张和倾斜理论的基础上,讨论了投射维数有限模以及Gorenstein投射维数有限的模构成的子范畴的反变有限性之间的关系,给出了相关的结果,并对给出的结果做出了证明.本文共分成四个部分.前两部分介绍了本文的背景和一些基本的知识,第三、四部分给出了
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的x,y∈G1均有d(f(x*y),f(x).f(y))<δ.是否存在一个同态g:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D.H.Hyers解
泛函方程的稳定性问题源自Ulam在1940年提出的关于群同态的稳定性问题:给定一个群(G1,*)和一个度量群(G2,·,d),其中d(·,·)为一个度量.给定一个ε>0,存在一个δ>0使得如果f:G1→G2为一个映射且对所有的X,y∈G1均有d(f(x*y),f(x).f(y))<δ.是否存在一个同态9:G1→G2使得对所有的x∈G1,d(f(x),g(x))<ε?1941年,D.H.Hyers解
本文定义了弱关系中的交叉余乘积系统的一般定义,同时引进了适用于弱A-cocleft余扩张和弱Hopf代数的余乘积.共分为五节:第一节是本文的引言;第二节对于带有等价子和余等价子的辫子张量范畴中的余代数C和对象V,我们引进了交叉余乘积系统,如果它满足扭曲和余循环条件,证明了由它诱导的余乘积是余结合的;第三部分我们引进弱A—cocleft余扩张的定义,在这个定义基础上提供了一个满足扭曲和余循环的交叉余
在20世纪末,量子力学拓展了新的研究领域——量子信息,其中量子纠缠是研究的热点。量子纠缠是存在于多体量子系统中的一种奇妙现象,由于纠缠的非局域特征它已被作为一种具有潜存价值的资源在量子计算、量子信息处理等领域发挥着关键作用。通过严格计算系统自旋间的量子纠缠,研究了Heisenberg XY模型和XXZ模型的纠缠问题,得到了一些有意义的结果。其主要内容如下:在磁场B存在的情况下研究了具有Dzyalo
本文定义并研究了Abel范畴中的Ω上同调和单子上同调.全文共分五节.第一、二节为本文的引言与预备知识.第三节介绍了相关内射对象和内射预解式的定义,并将其和伴随对、可离函子联系起来得到了一些定理,以此来完善相关内射理论.第四节介绍了Ω上同调的概念,以Ω内射预解式为工具,讨论了Ω导出函子、Ω比较定理和Ω连接同态定理等一些基本的同调理论,据此说明我们给出的Ω上同调是可行的.第五节介绍了单子上同调的概念并