【摘 要】
:
热电材料能够实现热和电之间的相互转换,对解决能源短缺和环境污染有重要的应用价值。结构低维化是提高热电性能的重要途径之一,最近,二维锡磷化物SnP3和锡硫化物SnSe2、SnS2被发现是具有超低晶格热导率的热电材料。在本文,我们利用第一性原理结合玻尔兹曼输运理论,研究了应力和异质结构对这三个二维材料热电性质的影响,得到以下主要结果:首先,我们研究了单层SnP3在施加双轴应力下的电子结构和热电性质。我
论文部分内容阅读
热电材料能够实现热和电之间的相互转换,对解决能源短缺和环境污染有重要的应用价值。结构低维化是提高热电性能的重要途径之一,最近,二维锡磷化物SnP3和锡硫化物SnSe2、SnS2被发现是具有超低晶格热导率的热电材料。在本文,我们利用第一性原理结合玻尔兹曼输运理论,研究了应力和异质结构对这三个二维材料热电性质的影响,得到以下主要结果:首先,我们研究了单层SnP3在施加双轴应力下的电子结构和热电性质。我们发现单层SnP3具有“布丁模型(pudding-mold-type)”价带结构,即同时具有平带和强色散带特征,导致p型塞贝克系数和p型电导率都很大,因此p型功率因子也很高。双轴压缩应力可以减小能隙,在应力为-6%时发生半导体-金属的性质转变。相反,双轴拉伸应力使能隙增大,提高了n型塞贝克系数,降低了n型电导率。虽然双轴拉伸应力使功率因子降低,晶格热导率变大,热电优值变小,但单层SnP3依然是一个较好的热电材料。比如在6%拉伸应力下的室温晶格热导率仅为4.1 Wm-1K-1,700K时的p型热电优值可以达到2.01。其次,我们比较研究了单层SnSe2和SnS2以及双层垂直范德瓦尔斯异质结SnS2/SnSe2的热电输运性质。结果表明,同单层SnSe2和SnS2一样,异质结的电子迁移率远高于空穴。异质结的导带和价带都比单层的变得更加色散,导致电子和空穴的迁移率都比单层的高。异质结中声学支和光学支之间的耦合比单层中的更强。异质结的晶格热导率介于两个单层的热导率之间,室温下为4.85 Wm-1K-1,低频光学支对晶格热导率也有较大贡献。优良的电子热输运性质和较低的晶格热导率使得SnS2/SnSe2异质结在热电器件中有着潜在的应用。
其他文献
目前常用的银基电触头材料是银-氧化物电触头材料,但由于氧化物导电率低,与银基体结合差,导致电触头材料工作时温升较高、电阻较大、电寿命下降。石墨烯具有高的导电性、导热性,并且石墨烯与银之间存在界面结合,有利于制备出高性能的银-石墨烯电触头材料。目前,国内外对银-石墨烯电触头材料公开报道较少。本文致力于银-石墨烯电触头材料制备,并研究其电性能。本论文以Alfa Aesar公司出售的石墨烯纳米片聚集体(
化石燃料大规模燃用造成的温室效应受到越来越广泛的关注。煤/生物质化学链气化(CLG)是一种清洁、高效的合成气生产技术,能有效减缓大气中CO2的上升。CLG利用载氧体将晶格氧转移到燃料中,然而现有技术无法将载氧体与灰分有效分离,载氧体与灰分相互作用会导致载氧体失活和烧结。本文系统的研究了煤/生物质灰中矿物对铜基载氧体的影响,对CLG的实际应用具有一定的指导意义。首先,通过灰中常见的氧化物、矿物以及配
自从石墨烯的发现以来,二维(two-dimensional,2D)范德瓦尔斯(van der Waals,vd W)层状材料一直是各个研究领域的热点。2D vd W层状材料中蕴含着丰富的物理性质,并具有优异的应用前景,所以需要不断地去探索及合成新型的2D vd W层状材料,进而推动相关物性和器件研究。在本论文中我们选择理论预测地新型2D vd W层状材料Al Sb以及被验证为2D拓扑绝缘体的Bi(
阴离子广泛存在于自然环境中,对生态环境的平衡及调控具有不可或缺的作用。荧光探针技术具有操作便捷,高灵敏度,应用范围广泛等优势,因此被广大科研工作者青睐。但是,由于阴离子在水溶液中的氢键作用,水溶性阴离子荧光探针的研究还是一项挑战性的工作。本文设计合成了三种基于吡啶鎓的水溶性荧光探针。利用探针分子的疏水性及阴离子与探针间的静电力作用,诱导探针发生聚集现象,进而触发π-共轭芳香环间发生π-π堆积产生荧
航空发动机和燃气轮机中的叶片是参与能量转换的关键零件,其具有复杂的曲面特征,并且厚度不均匀导致刚性不一致,导致加工质量难以保证。叶片经过铸造、锻造、机加工后都需要进行磨抛加工来提升表面光洁度和几何精度。目前机器人砂带磨抛在叶片的加工中表现出了很好的优越性,而结合机器人的多自由度灵活性进行磨抛需要磨抛中接触力有更好的稳定性。因此,本文在对磨抛过程稳定性研究的基础上,提出一种实现被动柔顺的测控方案,并
在深度强化学习等人工智能领域蓬勃发展的今天,机器人应用的智能化升级仍然进展缓慢,在机器人作业生产线上,机器人一些基本的抓取、固定、搬运等任务仍然需要编程人员的干预,机器人的自动化水平目前不能满足生产实际需求,机器人智能化水平的低下正在阻碍着机械制造等行业的发展。因此,通过研究基于深度强化学习的机器人智能化抓取控制技术是适应社会生产力的需要,具有重大意义。本文提出了机器人的智能化抓取动作控制的相关模
上肢康复运动中会产生明显的健体代偿,以代替受损功能完成目标任务,极大程度影响患者受损部位的康复进程,正确评估并抑制康复机器人引导下的上肢健体代偿有着重要意义。目前康复机器人引导的上肢健体代偿的评估主要依赖于康复医师的主观观察,没有统一的评估标准。基于运动数据实时采集构建健体代偿评估模型,可较好的解决评估中非标准化问题。为构建实时的健体代偿评估模型,论文首先基于健体代偿机理分析康复机器人引导下的上肢
能源的开发和利用对人类文明的发展历程起着重要作用。进入21世纪以来,社会发展对能源的需求日益增加,传统化石能源为所面临的能源紧缺及环境污染带来了巨大挑战。氢能作为一种清洁能源,其产物无污染,热值高等优点,越来越被应用于当前人们生产生活中。然而,氢气的爆炸极限浓度4-75.6vol.%,浓度范围较宽,对氢气的运输存储等环节带来了挑战。因此,氢气传感器的性能是也是一项制约氢气产业发展的关键技术。半导体
直立行走是人类日常生活中不可或缺的基本运动模式,由于人口老龄化、肥胖、军备竞赛等各种需求,利用科学技术实现人类行走的第二次革命不仅具有关键的学术价值,还具有重要的实际意义。下肢被动外骨骼装置是机械助力行走领域重要的组成部分,本论文利用人体肌肉骨骼系统计算机建模与仿真的方法,揭示人体内部下肢肌肉代偿策略,结合行走过程中人体下肢肌骨系统内在运作机理,提出了一种多关节弹性外肌腱嵌入下肢行走过程的有效方式
近年来随着社会经济与世界格局的发展,我国已进入了突发公共卫生事件高发期。面对日益复杂的公共卫生事件类型和原因,单纯依靠政府部门应对突发公共卫生事件已不再现实。加强对政府、社会组织等多方主体协同治理相关突发公共危机事件的研究显得尤为重要。本文在研究大量国内外文献的基础上,综合应急管理理论、多中心理论、协同理论等学科理论知识,选取了“湖北省D组织在2020年新冠肺炎疫情期间作为社会组织支撑地方政府治理