多孔碳电极材料的制备及其在不同电解液中的电容特性

来源 :山东理工大学 | 被引量 : 0次 | 上传用户:fiscar
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在过去几十年,对高效能量存储设备的迫切需求刺激了对于超级电容器研究和商业化的不断发展。而多孔碳材料因原料易得、制备简单、比表面积高、孔结构发达等优点,被广泛应用于超级电容器,特别是双电层超级电容器。多孔碳材料的电容性能主要受到比表面积、孔径分布的影响,这些孔参数可以通过改变活化条件来调控。本文以碳分子筛为碳源,通过改变活化条件制备了15种具有不同孔结构的多孔碳电极材料,并研究了所制备碳材料在7种水系电解液中的电容特性,以此探究活化条件对于孔参数的影响、孔结构与电容性能之间的构效关系以及电解质离子与孔的适配性等规律。首先,以KOH为活化剂,碳分子筛为碳源,通过改变活化剂用量(KOH与碳分子筛的质量比等于0.5、1、2、3或4)和活化温度(700℃、800℃或900℃)在氮气气氛下制备了15种多孔碳材料。发现所制备的多孔碳均是微孔碳且具有很高的微孔比例和较高比表面积,另外对于孔径分布的分析表明了较低的活化温度和碱碳比有利于极微孔的生成,当活化温度升高或碱碳比增大时,剧烈的活化作用在产生新的极微孔的同时,伴随着极微孔的扩大甚至坍塌合并,从而促进更大微孔的生成。我们对其孔参数和电化学性能进行了系统研究,所制备多孔碳材料在KOH、H2SO4电解液中显示出优异的电容性能,例如高达300 F g-1的高比电容、高倍率性能以及高达120000次循环的优异长期循环稳定性。在这项工作中,研究发现BET比表面积和比电容不是简单的线性关系,而微孔比表面积与比电容成正比。在KOH和H2SO4水系电解液中的电化学性能测试表明,在碱性电解质中,较小的孔隙对单位面积比电容的贡献较大,而在酸性电解质中则与之相反。我们在上一部分工作的基础上选取两个代表性的多孔碳材料AMS-2-700和AMS-2-800样品,在KOH、K2SO4、KCl、KNO3、Na NO3、Li NO3等具有不同溶剂化离子大小的水系电解液中进行电化学性能测试,根据不同电解液各异的离子半径、水合球体半径和导电性,分别研究了阴阳离子尺寸对于超级电容器电容性能的影响。上述电解液可以分为两个系列:具有不同阴离子的KOH、KCl、K2SO4、KNO3,以及具有不同阳离子的KNO3、Na NO3、Li NO3电解液。研究发现,所制备AMS-2-800样品在1M KOH电解液中具有144 F g-1的高比容量,且在10 A g-1的高电流密度下电容的保持率为78%。经过在不同电解液中的电化学测试,我们发现电解液的水合离子半径越小,电极材料更容易获得优异的电容性能;另外,具有较小孔尺寸样品表现为较差的双电层,这意味着合适的孔尺寸对于双电层的构建有着重要作用。
其他文献
本研究作业环境为玉米大田,针对农村劳动力短缺以及化学除草剂覆盖式喷洒问题,提出了针对玉米3-5叶期、5-8叶期的导航基准线识别方法,以及基于玉米行线位置的玉米行间杂草的识别策略,为实现农业机器人自主导航以及变量喷施化学除草剂奠定了基础,具体研究内容如下:(1)针对基于视觉导航的农业机器人在玉米幼苗期导航基准线提取易受杂草、缺苗干扰的问题,提出一种在玉米3-5叶期条件下高效获取导航基准线的方法。采用
无人驾驶技术能依托人工智能实现产业转型升级,已经成为国内外科研人员进行研究的热点课题。无人驾驶体系主要包括感知、规划、控制三个核心部分,其中环境感知主要是指无人驾驶车辆获取并提取场景信息的能力,是无人驾驶车辆实现无人驾驶的关键性环节,一直是无人驾驶领域需要研究攻克的重难点问题。而激光雷达已成为无人驾驶环境感知中不可替代的关键主流传感器,可以实时对周围场景进行地图三维重建,为规划模块提供必要的目标场
深度学习技术作为一种新兴科技是指机器在经过大量“学习”后可以代替人力进行工作。近年来,深度学习技术已广泛应用于农产品的种植、管理等过程,但应用区域主要集中在病虫害识别、杂草识别、果实采摘等方面,对农作物花期自动识别与辅助授粉的应用研究较少。实现花期有效识别对提高果实产量和品质有着至关重要的作用,并能够进一步推动智能化温室大棚的推广。传统的计算机视觉技术检测效率不高,检测准确度低且模型鲁棒性差,易受
作为自动控制系统中的执行元件,作动器是复杂装备的基础件和通用件,是国家中长期科学与技术发展规划纲要中指出的优先发展主题。其中电动静液作动器(Electro-Hydrostatic Actuator,EHA)具有负载能力强、功率密度大等优点,在航天、航空、船舶等重大装备领域被广泛应用。随着电机、电子、液压、控制技术的发展,电动静液作动器的发展必将从重大装备拓展到工业的各个领域,从而对国民经济产生重大
材料是科技发展的重要推动剂。自“神州五号”载人飞船圆满完成飞行任务,我国航空航天事业快速发展。新型耐高温、低密度、高强等极端环境材料得到快速发展。碳/碳(C/C)复合材料自问世以来由于具有低密度、高导电、高导热、耐高温等优良性能于一身,一直是航空航天、电器电子、高温特种领域的特种应用材料。由于C/C复合材料的制备周期长、原料利用率低使得C/C复合材料的造价高,限制其发展。另外,C/C复合材料由于全
磨削技术能够相对高效低成本地获得高表面质量和高加工精度,被广泛地应用于航空航天、汽车、船舶、精密器械、核能、光电子以及半导体等工业领域。然而,由于磨削加工过程中磨具表面大量不规则磨粒的不均匀性磨损,磨削被认为是一个复杂且极其不稳定的过程。此外,由于磨具表面磨粒大都呈高负前角几何形状,与其它机械加工方法相比,磨削加工去除单位体积材料需要消耗更多的能量,而较大的磨削能耗意味着磨削过程中会产生较大的磨削
生物质热塑复合材料是由木粉或农业剩余物中的木质生物质与热塑性聚乙烯或聚丙烯共混,通过挤出、注塑或模压成型等工艺制备而成,因其具有低吸湿性、低密度、耐生物侵蚀性、良好的尺寸稳定性以及高比刚度和强度,正在成为回收农业剩余物的有利选择。本论文提出了一种回收农业剩余物的高效方法,对机械化作业导致难以分离的地膜、沙土和棉秆进行共混,直接制备生物质热塑复合材料,并以此为启发,分别将硅酸铝纤维和芳纶纤维作为填料
对溶质运移的研究主要探讨各类溶质在土壤及地下水中的运动现象及规律机理.在诸多溶质中,污染物溶质的运移对世界可持续发展造成严重威胁.用数学模型量化描述其在多孔介质中的时空分布和迁移规律可以为污染的控制与修复提供理论依据.近些年来,分数阶微积分由于其所具有的遗传性或者记忆性,被广泛应用于描述复杂介质特别是多孔介质中的反常扩散现象.本文基于分数阶动力学从经典的两区模型中建立了分数阶动水-不动水两区模型,
随着我国电线电缆的使用量逐年增加,其所带来的火灾隐患问题日益凸显,如果发生火灾将会造成巨大的经济损失。对于新的防火电缆,可采用挤制成型的阻燃防护套进行保护,而对于已经投运的电力电缆,如何就地提高其防火性能已成为重要的研究方向。本研究用熔融共混的方法制备了陶瓷化硅橡胶复合材料,研究了助熔剂、阻燃剂、补强剂、成瓷填料的用量和基体树脂的改性对陶瓷化硅橡胶复合材料的拉伸性能、电气特性和阻燃性能的影响,并进
近水源区输电线路杆塔大多位于池塘、湖泊附近或地下水源丰富的地区,水源电阻率要远远低于周围土壤电阻率。靠近水源的土壤电阻率较小,远离水源的土壤电阻率较高。因此,水源区土壤结构可视为水平或垂直分层土壤结构。而传统输电线路杆塔接地方式多采用将自然接地体(混凝土桩基)与人工接地体(水平或垂直接地体)组成的接地装置敷设于土壤之中。混凝土桩基具有尺寸大、埋设深、内含钢筋数量多的特点。当自然雷击输电线路杆塔时,