预制式沥青混凝土骨架与灌浆强度平衡技术研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:cqsuifeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,高温车辙是我国沥青路面的主要病害之一。由于水泥路面优异的抗车辙性能,因此结合两者优点的半柔性路面应运而生。经实践发现,半柔性路面因水泥砂浆和混合料骨架强度不匹配而出现了路面开裂的问题,严重影响了路面的性能和寿命。本文针对半柔性路面的问题,通过在砂浆中添加乳化沥青进行改善。首先,筛选乳化沥青和优化水泥乳化沥青(CA)砂浆的配方,通过改变砂浆油灰比得到不同强度的砂浆;其次,对沥青混合料骨架进行配合比设计;最后,利用力学手段研究沥青混凝土骨架和灌浆之间的平衡关系。对CA砂浆的配方优化及性能研究表明:采用2种基质沥青和4种乳化剂制备乳化沥青并进行相关性能试验,最终只有M-1双龙乳化沥青满足乳化沥青和水泥拌和的双重要求。当减水剂掺量为0.2%、膨胀剂掺量为0.1%、消泡剂掺量为1.0%和早强剂掺量为2.5%配比时CA砂浆相关施工性能较好。改变砂浆油灰比得到7d抗压强度最大和最小分别为7.36KN和1.18KN,7d抗压强度已占28d抗压强度85%以上,因此在一定条件下可用7d强度代表CA砂浆强度。对沥青混合料骨架配合比设计研究表明:以22%为目标空隙率,通过改变2.36mm筛孔通过率得到粗、中、细三种混合料级配进行试验,最终得出在22%空隙率下2.36mm筛孔的通过率为13.2%。选择胶粉改性沥青、SBS改性沥青、复合改性沥青和自制高粘改性沥青4种不同粘度沥青制备的沥青混合料进行肯塔堡飞散试验和谢伦堡析漏试验,确定它们的最佳油石比分别为4.03%、4.00%、4.05%和4.09%。对CA砂浆型沥青混凝土性能研究表明:沥青混合料骨架强度随沥青粘度增加而增加,当沥青粘度最大时骨架强度能达到5.69KN。通过研究砂浆和混合料骨架强度对沥青混凝土强度的影响,得到沥青混凝土的总体强度与砂浆和混合料骨架强度具有一定的相关关系,并且总体强度小于砂浆和混合料骨架强度之和。采用自制高黏改性沥青混合料骨架,灌注强度相近的CA砂浆进行路用性能研究并与普通密级配AC-13混合料进行对比,结果表明此种沥青混凝土具有优异的抗车辙性能和抗水损害能力。
其他文献
本论文进行CO2加氢铁基催化剂的初步探索,同时设计加氢产品的收集、分析以及物料衡算的方法。Fe/Mn催化剂的制备采用机械混合法,助剂钾的引入采用浸渍法。在反应压力3MPa、反应温度300℃、H2/CO2摩尔比为3的条件下,在固定床中评价了CO2的加氢性能,结果表明:Fe/Mn金属配比为17/12时,CO2加氢综合效果最好;反应分别评价了不同铁、锰、钾的负载量对于CO2加氢反应的影响,实验表明:铁、
催化油浆富含芳香烃,是制备橡胶填充油、针状焦、碳纤维等高值产品的重要潜在原料,而催化油浆实现这类高值利用的前提是脱除其中含量高达0.2%~1%的固含物。通过蒸馏有望实现催化油浆的高效脱固,其具有技术成熟、操作方便、设备简单等优点。但催化油浆在蒸馏加热到300°C左右时就开始缩合生焦,这极大的抑制了催化脱固油浆收率的提高。因此,本文围绕确定催化油浆热稳定性差的分子基础,设计合适的化学反应体系,在蒸馏
硅酸锆作为一种良好的陶瓷材料,因其耐高温、耐酸碱、机械强度大的特性,在陶瓷分离膜和多孔材料方面有广泛的应用前景。本文通过水热法制备窄分散的ZrSiO4微纳米粒子,以管式Al2O3为支撑体,采用固态粒子烧结法,经过高温焙烧后得到稳定膜管;以水玻璃和氧氯化锆为原料制备硅酸锆多孔材料,研究制备硅酸锆粒子和多孔材料的影响因素。以NaF为矿化剂,聚乙二醇2000为分散剂,采用水热法制备ZrSiO4微纳米粒子
我国石油化工工业规模增长迅速,但火灾事故应急指挥和应急处置能力却相对滞后。本文基于ICS(事件指挥系统)理念研究了应急指挥流程和相关辅助决策技术,以催化裂化原料泵事故、石化罐区火灾事故和延迟焦化火灾事故为例进行了分析。石化罐区储存大量易燃易爆油品,是火灾事故的高发区域。石化罐区火灾事故的主要辅助决策问题是确定事故影响范围。利用池火灾均匀辐射模型模拟了原油、汽油、煤油、柴油液池火灾事故的影响范围,为
含油污泥是一种主要混合了石油、污水、污泥等的危险废弃物,直接排放将严重危害环境安全。为实现对含油污泥的无害化处理,并实现资源的回收,本文对含油污泥的化学热洗处理和微波热解处理分别进行了研究和优化,并初步进行了工艺组合设计。对含油污泥的物理化学性质和基本组成进行了研究。结果表明,选用的桩西含油污泥含油率为26%,含水率54%,含固率20%,样品粘度高,油分以重油为主,氢碳比较高,铁、铝和硫含量较高,
水性丙烯酸酯乳液由于其环境友好、低成本、优异的成膜性和易于结构调整而已广泛用于水性建筑涂料领域中。然而,普通水性丙烯酸酯在耐水性、耐化学性和耐热性方面仍存在缺点,不能满足建筑行业的需求。环氧树脂的结构决定了其优异的附着力、耐腐蚀性、热稳定性、机械强度以及较高的反应活性,使得其可用于对丙烯酸酯进行改性,以达到优势互补,并且环氧接枝改性保留了环氧基团的反应活性,在交联固化成膜时提高其交联密度,可使得涂
原油采出液在从井口运送到联合站的输送过程中,由于受到井筒、油嘴、阀件、机泵等的剪切作用,原油与采出水之间常常会发生乳化,形成油包水型乳状液。而沥青质作为原油中具有极性的组成成分能够吸附到油水界面上形成一层强度较大的界面膜。这层界面膜的存在使原油乳状液的分散相液滴在互相碰撞时不易发生聚并,能够起到稳定原油乳状液的作用。温度以及原油中沥青质的质量分数、蜡的含量、溶剂的极性等因素都能够改变沥青质的缔合状
随着社会快速发展,能源高效利用成为政府和企业关注的重点。夹点技术从理论上导出了最小能量需求,为换热网络设计提供了方向和限度,有效保障了具有最大能量回收换热网络的建立,在节能减排等领域做出了巨大贡献。利用夹点技术进行能量系统集成提高炼油装置的整体能量利用效率,对我国炼油行业和经济持续发展意义重大。炼油行业中,常减压蒸馏装置耗能巨大,节能水平高低直接影响炼油企业经济效益和市场竞争力,故本文以此装置为对
随着海上油气田开发的兴起,油气在管道运输过程中,尤其是在流体转向处(如弯头、三通等)面临的冲蚀问题越来越严重。目前国内外学者对于管道冲蚀的研究大多局限于普通弯头,但在实际工程中,T型弯头也是不可替代的部件之一,尤其是在不允许使用大曲率弯管的情况下。本文在数值模拟的基础上引入实验研究,采用多相流动理论、冲蚀预测理论、颗粒-壁面碰撞反弹模型、气体/液体与固体颗粒双向耦合、灰度关联分析等理论和方法。对T
化石能源在当前仍然是全世界最重要的一次能源,在开发化石能源时需要对储层进行一定的改造,给油气储层施加压力,使储层破裂来降低油气开采难度,但是传统的以水力压裂为代表的开采方式有着单次、整体、效率低的缺点。电爆炸作为一种冲击波的产生手段,可以利用脉冲功率技术把电能转化为可控制的冲击能量,并且可以改善储层结构,增大渗透率,是一种高效率的开采方式。论文意在研制一种可以在井下工作,将电能转换为机械能,产生冲