论文部分内容阅读
随着近几十年的发展,自主水下机器人(Autonomous Underwater Vehicle,AUV)的技术日趋成熟并逐渐获得广泛应用,已经在科学考察、海洋资源开发、军事活动等相关领域发挥重要作用。随着人们对AUV能力要求的不断提高,对AUV的使命需求也越为复杂,AUV的自主能力将面临巨大挑战,当前AUV较低的自主性已经成为限制其应用范围的重要原因之一。因此,增强AUV自主能力的相关研究很有必要,也是当前水下机器人领域的研究热点之一。AUV对自身周围环境的感知能力是其根据使命需求进行自主决策的首要前提,AUV需要具有对传感器信息进行融合处理的能力。 本文的研究工作依托中国科学院重点项目,在总结国内外目标跟踪相关研究成果的基础上,结合项目对AUV的实际功能需求,对AUV使用主动声呐跟踪机动目标的相关技术进行了深入研究,具体研究内容为: (1)无偏量测转换方法研究 在水下目标跟踪中,主动声呐获得的量测信息为极坐标系下的距离和方位角,而目标的运动方程通常建立在直角坐标系下,坐标系的不相匹配造成量测方程非线性,量测转换方法是量测方程线性化的一种常用方法,但传统量测转换方法在互距离测量误差增大时跟踪性能有所下降。针对这一问题,首先分析了传统量测转换方法的转换偏差,然后对现有去偏量测转换方法的转换偏差和估计偏差进行了分析与比较,在此基础上提出了一种基于量测量和卡尔曼滤波预测量的混合去偏量测转换方法,在跟踪的不同阶段分别基于量测量和卡尔曼滤波预测量,结合无迹变换估计转换量测方差。最后通过仿真验证该转换量测方法较现有方法具有更高的跟踪精度和可信度。 (2)目标运动模型解耦合方法研究 应用量测转换方法将目标位置量测信息由球面坐标系转换到笛卡尔坐标系后,转换量测方差矩阵为非对角阵,量测方程于各坐标轴之间耦合,计算量增大。为减少计算量,对目标量测模型的解耦合方法进行研究。首先给出了高维耦合目标的运动模型,然后研究了两类量测方程的解耦合方法,接下来,为去除各坐标轴之间估计结果的相互影响,在正规变换方法的基础上,提出了一种构造修正加权矩阵的改进解耦方法,并详细阐述了修正加权矩阵的构造方法。最后,将该解耦方法与转换量测方法和交互式多模型算法相结合进行了仿真验证,仿真结果表明改进解耦方法可以有效减少计算量,且能够消除各维度估计结果之间的相互影响。 (3)机动目标跟踪自适应滤波算法研究 为提高机动目标跟踪定位的精度,对自适应滤波算法进行研究。首先给出了单机动目标跟踪的基本原理,然后对当前较为常用的目标运动模型进行了介绍和仿真分析,接下来,在对机动目标跟踪算法进行简单分类和说明的基础上,提出了一种基于实时辨识自适应滤波的改进交互式多模型算法。该改进交互式多模型算法包含一个基于匀速运动模型的卡尔曼滤波器和一种实时辨识自适应卡尔曼滤波器。后者由两个卡尔曼滤波器组成,目标状态估计滤波器用于对目标的运动要素进行分析,另一个滤波器对目标状态估计滤波器的过程噪声方差进行估计,使过程噪声方差能够根据目标的机动强度进行自适应调整。最后通过仿真验证了算法的跟踪性能良好,能够在一定程度上提高机动目标的跟踪精度。 (4)杂波环境下的数据关联算法研究 针对水下目标跟踪环境中存在大量杂波的实际情况,对杂波环境下的单目标数据关联算法进行研究。首先介绍了杂波环境下数据关联的基本原理,然后对几种经典的单目标数据关联算法进行了简要介绍,接下来,在对幅值信息的统计特性进行详细介绍的基础上,考虑到跟踪过程中的目标存在性问题,提出一种基于幅值信息的改进集成概率数据关联算法,将幅值似然比与目标存在概率和量测量关联概率相结合,可以在多杂波环境下改善集成概率数据关联算法的跟踪性能,提高目标存在性判断的快速性,降低目标丢失概率。最后通过仿真验证了改进算法的有效性。 (5)算法联合仿真与实现 对基于以上研究内容的机动目标跟踪系统进行软件实现,并设计了一套该软件的辅助验证仿真系统,通过Matlab模拟目标运动轨迹并提供量测信息,同时接收并记录目标跟踪软件计算得到的目标运动位置估计结果,以便于算法性能的分析与比较。最后使用该辅助仿真系统验证了该套软件的可行性。