【摘 要】
:
当前,随着人类生产活动的增加,空气雾霾、油污泄漏等影响生态环境和人类健康的问题时有发生,研究与开发吸附能力强、选择性高、与环境友好的高分子材料成为当前的研究热点。本文以生物可降解高分子材料聚β-羟基丁酸酯(PHB)和亲水非降解高分子材料聚氧乙烯(PEO)为基材,运用同轴电纺丝技术制备了多结构的PEO/PHB核壳超细纤维。研究了PHB和PEO纺丝溶液在不同温度下的动态流变性能及电纺条件对纤维形貌、结
论文部分内容阅读
当前,随着人类生产活动的增加,空气雾霾、油污泄漏等影响生态环境和人类健康的问题时有发生,研究与开发吸附能力强、选择性高、与环境友好的高分子材料成为当前的研究热点。本文以生物可降解高分子材料聚β-羟基丁酸酯(PHB)和亲水非降解高分子材料聚氧乙烯(PEO)为基材,运用同轴电纺丝技术制备了多结构的PEO/PHB核壳超细纤维。研究了PHB和PEO纺丝溶液在不同温度下的动态流变性能及电纺条件对纤维形貌、结构和性能的影响,通过扫描电子显微镜(SEM)、透射电镜(TEM)和全反射傅里叶红外光谱(ATR-FTIR)等手段对制备纤维的形貌、核壳结构、热性能、结晶性能、力学性能和亲水亲油性能进行了表征和分析。运用旋转流变仪研究了PHB和PEO纺丝溶液的在不同温度下的动态流变性能。结果表明,温度对PHB溶液的可纺性影响不明显,但过高的温度不利于纺丝,增加剪切速率,可纺性提高;对PEO溶液,提高纺丝液温度,纺丝加工窗口变宽;PHB和PEO纺丝溶液在25℃较为稳定,而在35℃和45℃稳定性随应力作用时间的延长而降低,但在短时间1min内溶液较为稳定;PHB和PEO纺丝溶液均表现出剪切变稀的特点。运用同轴电纺丝技术,以PEO为核层组分,PHB为壳层组分,通过调控纺丝工艺条件,可制备出光滑无孔、螺旋无孔、螺旋多孔的PEO/PHB核壳超细纤维;多孔螺旋结构的PEO/PHB核壳超细纤维的热稳定性较纯PHB纤维和纯PEO纤维有所提高;以PHB为核层组分,PEO为壳层组分,调控纺丝工艺条件,也可制备出多孔的PHB/PEO核壳超细纤维。以高速旋转接收辊为同轴电纺丝接收装置,可制备出有序PEO/PHB核壳超细纤维,纤维平均直径为0.57μm~1.27μm;纤维含有组分PHB的α型晶体和组分PEO的单斜晶体;PEO大分子链在高速拉伸过程中易从折叠链晶体向伸展链片晶发展,而PHB组分不受影响;纤维直径和结晶度均随电纺条件改变而变化;以单因素为变量,纺丝电压18kV、推注速度0.07mm/min和收集距离8cm时所对应的纤维膜均具有较高的力学性能;有序PEO/PHB核壳超细纤维中各组分的热学稳定性均比纯组分高。疏水吸油测试结果表明,多结构的PEO/PHB核壳超细纤维膜的疏水性和吸油性大于纯PHB纤维膜,但保油率低于纯PHB纤维膜。
其他文献
锌-空气电池作为最具有潜力解决能源危机的发电技术,因其高效、无污染等优点受到广泛关注。然而,由于阴极氧还原反应(oxygen reduction reaction,ORR)是一个动力学缓慢的四电子转移过程,具有很高的过电势,所以,要使用大量的Pt基催化剂来加速这一过程,而Pt储量少、成本高、易毒化、稳定性差、选择性单一等缺点严重制约了商业化发展。因此,开发高ORR性能、长期稳定的非贵金属催化剂或非
目的:观察补充重组球形脂联素对链脲菌素诱导的糖尿病小鼠睾丸组织中自噬和内质网应激表达水平的影响,探讨球形脂联素是否通过调节自噬和内质网应激水平对糖尿病小鼠睾丸产生保护作用。方法:48只雄性C57BL/6小鼠随机分为对照组(NC组,n=8)和糖尿病造模组(n=40)。用链脲佐菌素腹腔注射制备1型糖尿病小鼠模型,共24只小鼠造模成功。将造模成功的糖尿病小鼠随机分为糖尿病组(DM组,n=8)、糖尿病脂联
聚偏氟乙烯(PVDF)及其共聚物凭借优异的铁电特性、生物兼容性以及化学稳定性,在众多有机聚合物材料中脱颖而出,被广泛用于传感器、存储器等领域。为测试并提高由PVDF及其共聚物制备的器件的性能,对相关材料的制备方法以及性质进行实验探究是必要的。本文首先探究了利用旋涂法制备P(VDF-TrFE)的工艺,得出由浓度为2.5 wt%的P(VDF-TrFE)溶液旋涂制备的薄膜的厚度与转速的关系,并测试薄膜的
牛支原体(Mycoplasma bovis)可以引起犊牛肺炎、关节炎,成年母牛乳腺炎等疾病,给养牛业造成了巨大的经济损失。研究表明,牛支原体主要通过膜蛋白的黏附作用进而定殖于宿主细胞,并通过代谢产物造成宿主细胞损伤和死亡。目前已知的24Ku、pMB67、P26等脂蛋白的生物学功能已经得到证实,但是仍有许多脂蛋白未被发现。关于牛支原体P59蛋白及其功能的研究尚未见报道。本研究利用生物信息学方法对编码
纤维增强复合材料(Fiber Reinforced Polymer,简称FRP)筋材作为一种新型环保复合材料,具有轻质高强、抗疲劳、耐腐蚀、电磁绝缘等优点,已逐渐成为土木、水利以及交通等领域相
固-液复合润滑技术是通过利用固体润滑材料与液体润滑材料间的协同效应,来提高润滑效果,改善极端工况下摩擦磨损的一种重要手段。类金刚石碳基薄膜(diamond-like carbon films,DLC films)具有硬度高、摩擦系数低、耐磨性好、化学稳定性等优点,被认为是固体润滑膜的有力竞争者。然而,由于DLC薄膜的表面能低、化学惰性大,使其难以与传统添加剂发生反应。金属掺杂可以提高DLC薄膜表面
核电作为清洁、安全的新能源,是目前最有可能替代化石燃料的能源。核阀泄漏造成严重事故,这些事故严重危害人类生命健康,给地球带来巨大的灾难。针对核级阀门很难通过实验测
重金属具有毒性,因而重金属污染对人类健康和生态系统构成了巨大威胁。一些重金属离子如Cu2+、Fe3+、Co2+、Pb2+即使在非常低的浓度水平下也对人体和环境有极大的危害。重金
离子液体(Ionic liquids,ILs)一般指熔点在100℃以下的熔融盐类,构成ILs的离子一般为结构不对称的有机阳离子和无机或有机阴离子。离子液体具有较低的熔点、宽的液态范围与电化学窗口、不易挥发、良好的导电性、较高的热稳定性等独特的物理化学性质。自21世纪以来,离子液体开始受到了催化化学、材料科学、电化学分离技术等各个研究领域的广泛关注。这可能是因为离子液体作为“分子结构的可设计性”溶剂
自旋电子学器件通过控制自旋来实现数据的存储、读取、运算等功能,是后摩尔时代最具应用潜力的器件方向。为实现自旋注入,这类材料应为高度自旋极化的磁性材料,且为保证在室温下的正常使用和工业上制备可能,应具有高于室温的居里温度。为了在由过渡金属组成的Heusler合金中筛选出可应用于自旋电子学器件材料——具有高自旋极化的稳定的铁磁体,本文设计了一种基于深度神经网络的机器学习结合密度泛函理论计算的材料筛选工