论文部分内容阅读
本篇博士学位论文研究了抽象空间中若干非线性微分方程解的存在性.全文由以下七部分组成.第一章是绪论,简述研究问题的历史背景.边值问题是微分方程学科的重要组成部分,普遍存在于自然科学的各个研究领域,Banach空间中微分方程边值问题解的存在性一直是广大学者和专家关注的热点问题.分数阶微分方程尽管历史悠久,但其初期发展缓慢.只是近年来带Riemann-Liouville和Caputo型分数阶导数的常、偏微分方程取得了一些重要的进展.我们对与本文相关的非线性整数(分数)阶微分方程解的存在性研究现状进行回顾,同时对本文所做工作的背景和主要内容做了简要的介绍,最后给出了本文所需的一些预备知识.第二章借助于经典的锥上不动点定理、不动点指数理论、Kuratovski非紧性测度理论、严格集压缩算子相关理论和一些分析技巧,讨论了抽象空间中的两类非线性奇异积分-微分方程三点边值问题正解的存在性与多解性,获得了一些新的结果,相应地推广和改进了已有文献的结论.第三章再次利用不动点定理和严格集压缩算子相关理论讨论了抽象空间中的一类非线性多点边值微分系统正解的存在性与多解性,得到了一些新的结果.第四章首先基于新建的比较结果、上解或下解的方法研究了一类广义Sturm-Liouville多点边值问题迭代正解的存在性与误差估计,我们的结果不需要任何的紧性条件.其次利用正则锥上的单调迭代技巧考察一类带非线性边值条件的分数阶脉冲微分方程解的存在性.我们的非线性边值条件将初值问题、终值问题、反周期边值问题、一般两点边值问题的讨论统一起来.第五章利用正规化方法、序列技巧、不动点定理、对角化方法讨论抽象空间中半直线(无穷区间)上一类带更多奇异项的非线性分数阶微分方程多点边值问题正解的存在性.所得结果推广了已有文献的相关结果.第六章利用预解算子的有关理论和不动点定理讨论了抽象空间中带无穷时滞和非线性边值条件的分数阶中立型发展方程,给出相应的全局存在唯一性的一些新结果,并且给出了适度解的关于初始状态的连续依赖性.第七章讨论了抽象空间中一类分数阶脉冲微分包含的解集的非空性、可测版Filippov定理以及相应的松弛结果.其主要工具是集值理论、分数阶微积分、集值算子不动点定理以及序列分析技巧.