【摘 要】
:
交通强国,铁路先行。为推进国家铁路建设与保障线路安全运营,各种智能监测设备层出不穷,其中以激光雷达最为热门。相较于其它类型的监测设备,以激光为信号载体的激光雷达能够更好的实现监测功能。传统激光雷达大多是基于车载自动驾驶应用而开发,注重高刷新率与超远距离大视场角,对细节辨识需求不高,这显然不太符合铁路监测的需求。通过设计一套可行的机械结构实现高分辨单线激光雷达三维扫描,可以改善传统激光雷达纵向角分辨
【基金项目】
:
国家自然科学基金(No.61675194); 国家重点研发计划重点专项(2018YFB0407001); 中国铁路总公司科技研究与发展计划项目(K2018G054);
论文部分内容阅读
交通强国,铁路先行。为推进国家铁路建设与保障线路安全运营,各种智能监测设备层出不穷,其中以激光雷达最为热门。相较于其它类型的监测设备,以激光为信号载体的激光雷达能够更好的实现监测功能。传统激光雷达大多是基于车载自动驾驶应用而开发,注重高刷新率与超远距离大视场角,对细节辨识需求不高,这显然不太符合铁路监测的需求。通过设计一套可行的机械结构实现高分辨单线激光雷达三维扫描,可以改善传统激光雷达纵向角分辨率不足的问题,实现全天候智能监测列车高危运营线路段,对智能轨道交通建设有着重要研究价值。本文的主要内容包括:1、根据铁路监测目标,选用合适的激光雷达并设计了两套符合目标需求的机械扫描结构。方案一以抗振动干扰的稳定性和模块化为主,实现三维扫描的活动结构体积小、重量轻,点云图像在边缘换向处误差小。方案二以轻量化和集成度为主,安装便捷,各部件配合更为合理。通过采集实际场景的点云图像发现,两个设计方案所采集到的点云图像无明显差异,均能较为完整的实现监测区域的扫描。2、在两种激光雷达机械结构的基础上进行了深度图转化为点云图。根据各自扫描中心与旋转中心的关系,给出两种坐标转化的公式,并实际验证坐标转化出的点云图与实际场景是否保持一致。此外,由于常规的扫描多以匀角速度为首选,使得扫描线间距随着扫描距离的增加而不断增大,导致障碍物监测误差也随之增大。而这种间距增加是非线性的,因此采用一种非线性变化的扫描速度使得扫描线均匀分布于扫描区间内,弥补远距离处过大的监测误差。另外,通过机械结构的纵向扫描与雷达光源的水平扫描相结合得到的扫描线实际是倾斜的,本文给出不同扫描线的最大倾斜高度,并通过算法矫正任意一条扫描线中任意一个脉冲信号点的坐标信息,这将为未来远距离道路监测提供精度修正的借鉴。3、采用直通滤波算法中的高度阈值法,提取扫描区域内的障碍物的点云信息,并给出适合道路监测的高度阈值。实际上线测试后得到的结果表明,该方法能够较为完整的将障碍物从背景点云中提取出来,比较好的过滤无关点云。
其他文献
UTV车具有出色的机动性,能在普通车辆难以行驶的路面上行走自如。复杂多变的路面环境,使得传统的被动悬架已无法满足车辆行驶的动力学性能需求。执行器为电磁阀式减振器的悬架系统阻尼可调,是一种减振性能优良的半主动悬架系统。对其的控制研究中,大都在单一路面设计系统控制参数,混合路面下悬架控制参数无法根据路面自适应调节,行驶动力学性能提升有限。针对上述问题,本文以UTV车电磁阀式半主动悬架为研究对象,对系统
近年来,在全世界范围内,保护环境、使用清洁能源的呼声越来越高,国家也大力支持新能源的开发与普及工作,电动汽车行业也得以飞速发展,而发展过程中也出现了各种问题,最受关注的就是不断出现的锂离子电池热失控引发火灾事件,锂离子电池的热量管理问题也因此成为制约电动汽车发展的重要瓶颈。本文以某款已量产的三元锂离子电池为研究对象,在COMSOL多物理场软件中建立锂离子电池热失控模型,并以温度为媒介,建立热-电滥
高镍三元材料LiNixCoyMnzO2(x+y+z=1,x≥0.6)具有高比容量、环境友好且成本低等优点,但存在循环稳定性和倍率性能较差等问题。为了改进材料的上述缺点以满足更高的商业化要求,需要对其制备工艺进行优化研究,并对材料进行表面改性,从而进一步提高其电化学性能。本文采用梯度化混锂工艺合成不同锂配比的高镍三元正极材料。研究了配锂量对材料晶体结构、颗粒形貌、粒度分布、价态变化、相变演化及电化学
据统计,我国每年的交通事故导致人员死亡的数量一直处于较高水平。其中,行人、骑脚踏车者和摩托车驾驶员占交通事故死亡人数的很大比例。随着汽车行业的发展,汽车内部的乘员约束系统的相关研究越来越多,车内乘员的被动安全保护措施相对较为完善,然而同为交通道路的使用者,行人以及二轮车骑行者并没有得到较全面的被动安全保护。故本文针对车外行人以及二轮车骑行人员,提出一款可以穿戴的安全气囊系统,在上述人员与汽车碰撞过
随着智能驾驶技术的发展,智能汽车轨迹跟踪控制技术日趋重要。本研究依托国家重点研发计划“新能源汽车”专项子课题,对智能汽车轨迹跟踪与避障控制进行了研究。针对中高速大曲率工况下,智能汽车轨迹跟踪精度和稳定性急剧下降的问题,本文采用线性时变模型预测控制方法,建立了轮胎侧偏角和横摆稳定软约束,保证轮胎处于线性稳定范围内,从而提高轨迹跟踪的精度和稳定性。考虑到模型预测控制计算量大、实时性低的问题,提出了基于
车辆自主导航算法是当前智能车辆领域研究热点,传统车辆自主导航系统高度依赖于GPS位置信号。然而,在现代军事化环境作战场景下,由于信号干扰等因素,往往难以获取准确可靠的GPS信号;同时,由于信号干扰,车辆难以实时获取前方道路可通行性信息,难以满足复杂多变的环境下的导航需求。因此,实现车辆在无GPS复杂环境下的自主导航具有重要的战略意义。针对上述问题,本文提出一种新的车辆自主导航算法,为无GPS复杂环
智能车辆技术能够实现车辆自主操纵,使驾驶员的双手从复杂的驾驶环境中得到解放,降低交通事故的发生频率,减少交通拥堵等情况的发生。而路径跟踪则是智能车辆实现其智能化行为的重要环节,同时,对规划的路径进行准确且稳定的跟踪是实现智能驾驶的基础。本文对智能车辆路径跟踪控制问题进行研究。首先,建立适用于低速工况的二轮车辆几何转向模型,同时建立考虑动力学特性的二自由度车辆动力学模型。基于二轮车辆几何转向模型对纯
由于化石能源的开发,传统燃油汽车的尾气产生许多环境污染物。电动汽车具有无污染和低噪声等优点,是解决资源匮乏和温室效应问题的重要途径。永磁同步电动机具有诸多优点,例如效率高、体积小等,被认为是替代汽油机的绿色动力源。有限集模型预测控制(Finite Set-Model Predictve Control,FS-MPC)因其高性能、快速动态响应和强鲁棒性而成为一种流行的控制策略。同时,它易于建立模型,
高性能纤维材料已广泛应用于军事及体育防护用品领域,剪切增稠材料与高性能纤维材料结合制备的材料具有优异的抗冲击性能,利用复合纤维材料研制的抗冲减振装置对大型土木工程来说,以最大程度地减少外部冲击损害。剪切增稠胶(Shear Thickening Gel,STG)具有很好能量吸收效果以及抵抗变形能力;超高分子量聚乙烯纤维(Ultra-High Molecular Weigh Polyethylene,
近年来,伴随制药行业飞速发展,环境中制药废水污染问题引起社会广泛关注。全球各流域均能检测到不同程度的抗生素污染,水体中不断蓄积的抗生素对人类健康和生态系统造成极大危害。与传统氧化、降解等水污染处理技术相比,吸附法由于经济环保、操作简单等优点成为最切实可行的药物污染治理方法之一。本文基于二维类石墨烯型薄层氮化硼(BN)纳米材料,通过调变合成方法和条件,构建了三种高吸附性能的掺金属氮化硼基纳米复合材料