论文部分内容阅读
随着微纳米加工与制备技术的发展,对磁光特性材料的研究已由平滑的薄膜转到具有周期性孔阵、条阵、圆盘阵列以及由铁磁金属、贵金属、电介质等构成的复合纳米结构薄膜上来。由于这种周期性结构薄膜能够激发等离激元,并可以通过改变结构参数(孔或盘的半径、阵列周期、薄膜厚度等)来调控等离激元的激发,而磁性材料在外磁场的作用下可以产生磁光效应,因此这种同时兼具磁光特性和等离激元特性的新型纳米结构—磁等离子晶体或磁等离激元,已成为近几年的研究热点,而对应的学科分支被称为磁等离激元学。由于磁性等离激元纳米结构有效结合了表面等离激元和磁性两种特性,并且光在具有表面等离激元效应的纳米结构内部诱导的电场强度大大增加,从而增强了磁光效应,导致磁光特性在许多领域得到重要的应用,如激光领域中的磁光调制器、磁光隔离器、磁光开关,生命科学技术领域中的磁光传感器,材料领域中的磁畴观测等。涉及磁光效应的理论和实验很多,在本文中,将时域有限差分法(FDTD)应用到磁光效应的计算中,丰富了磁光计算的方法,通过对比其它理论计算和实验结果,验证了此方法的可靠性。实验方面利用光刻技术制备了周期阵列的薄膜,研究了不同体系的磁光增强与等离激元的关系。本文的研究工作主要包括以下几个方面的内容:1、利用我们的计算方法主要研究了孔阵金属膜与磁介质层结合构成的磁等离子晶体体系的透射增强以及磁光效应。研究的模型主要包括方孔体系和圆环孔体系,通过调节孔阵周期以及填充介质的参数,探索法拉第谱和透射谱的变化关系,获取光学增强和磁光增强的最佳条件。对于方孔体系,计算发现,孔径为250 nm,孔阵周期从350 nm增大到450 nm的过程中,在短波区域,法拉第角比较大的位置附近出现一个新的透射峰,并在这个新峰位置附近同时出现了大的法拉第角和透射率;新峰的位置随周期增大发生红移,并对填充介质的折射率非常敏感。此外,通过结构搜索的办法,我们构建的环孔体系(外径150 nm,内径75 nm)具有更大的磁光增强,与半径150 nm的圆孔进行了对比,结果发现,圆环的占空比虽然小于圆孔,但是对应的透射率却大于圆孔。对于周期450 nm的圆环和圆孔阵列,圆孔的占空比约为35%,透射率为53%,增强系数达到1.5,但是对于同样外径的圆环体系,其占空比减小到26%,而对应的透射率却增大到65%,增强系数为2.48,几乎是圆孔的两倍。此外,在光学增强的位置还发现了大的法拉第角和克尔角,如在892 nm位置附近,透射率达到63%,对应的法拉第角达到0.74度,而同样厚度的平整膜的法拉第角只有0.03度,已经增强了二十多倍,增强效果非常明显。这种结构还可以在同一个波长位置得到增强的克尔角和相对较大的反射率,从而实现多重测量。此外,这两种体系的等离子晶体结构对环境介质的变化比较敏感,随着折射率增大,法拉第角和透射峰都出现红移。因此本部分计算对于磁光传感器和磁光隔离器的设计具有重要的意义。2、实验制备了一维周期阵列的条形结构多层薄膜,研究了其横克尔增强。银/钴/银三层结构阵列薄膜产生的反射率吸收峰比银/钻双层结构更明显,说明顶部银膜能更好的激发表面传播等离激元(SPP)。实验表明两种体系都产生了明显的横克尔增强,在反射率比较高的情况下仍旧达到1.5%,并且随入射角增大横克尔振荡峰发生红移。此外,我们在上层银膜和中间钴膜的中间引入介质层,构建一种金属-绝缘体-金属波导结构薄膜体系,通过测量此体系的光学特性和磁光特性,发现反射谱和克尔谱都出现新的振荡峰,并指出介质层两侧产生的SPP耦合导致的波导等离子极化是造成多峰振荡的原因;此外,新峰的出现使得此体系的光学信息和磁光信息更加丰富,有利于实现多通道的磁光调制。通过分析磁场对SPP的影响,理论分析了横克尔增强的原因:磁场导致了磁性材料中介电常数非对角元的出现,进而引起SPP的波矢变化,即SPP的波长变化,这种变化改变了反射光的强度从而导致横克尔的产生。3、研究了二维周期阵列的光学特性和磁光效应。制备了棋盘结构和点阵结构的薄膜体系,研究了薄膜体系的SPP激发特性和磁光特性。对于棋盘结构,溅射了两种体系的薄膜:银-钴-银膜和银-钴-二氧化硅膜。通过测量它们的光学特性发现,氧化物覆盖的薄膜,虽然也有表面传播等离激元SPP的产生,但是整体效果不明显,没有测到横克尔增强,但得到较大的极克尔,原因是钴产生的等离激元共振传播距离小,更多的被局域在颗粒周围,从而导致了局域等离子共振(LSPR)的增强,致使极克尔较大,相对于平整钴膜提高了近一倍。对于银-钴-银棋盘结构的薄膜,由于上层银膜能更好的激发SPP,反射率谱有了明显的吸收峰,并且横克尔明显增强,在很大的方位角和入射角范围内都可以发生明显的SPP激发现象,调控参数更为丰富。对于点阵结构的银-钴-银薄膜,我们制备的样品中没有发现明显的横克尔增强,但极克尔却很大,原因是LSPR的作用更为明显。总之,结构参数和材料体系的设计对SPP和LSPR的影响很大,而横克尔和极克尔机理不同,从而导致了不同的增大效果。