论文部分内容阅读
超低C控N型316LN奥氏体不锈钢,因其具有良好的加工性能、优良的综合力学性能以及耐晶间应力腐蚀性能,被选用作AP1000第三代压水堆核电站的主管道材料。不同于第二代压水堆核电站的铸造型主管道,AP1000主管道采用管体和管嘴整体锻造成型,且服役寿命延长至60年,这对主管道材料的性能和制造工艺都提出了很高的要求。在主管道制造和服役过程中,影响其性能的最本质因素是化学成分和组织的变化,因此开展316LN不锈钢相关组织变化的研究对主管道制造及应用均有重要的现实意义。本文针对AP1000核电站主管道的制造以及服役过程,研究了主管道材料316LN不锈钢的铸态组织特征及其影响因素、在热加工条件下的组织演变特征以及在400℃下长时间时效过程中的组织和性能变化。实验结果将有助于理解主管道在制造过程中的组织控制以及服役过程中的组织预判,并可为主管道材料成分和加工工艺的优化设计提供参考数据。研究发现,化学成分的改变影响316LN不锈钢铸态组织的一次枝晶间距:随着Cr、Mo、Ni含量的增加,一次枝晶间距增大;N含量增加可减小一次枝晶间距。化学成分的改变还影响316LN不锈钢的凝固顺序和相组成:随着N、Ni的增加及Ci、Mo的减少,高温铁素体的形成受到抑制,间隙原子N的影响大于置换原子Ci、Ni、Mo的影响。在普通铸造条件下,316LN不锈钢的凝固模式首先受化学成分的影响,可以利用Hammar and Svensson当量公式较准确地预测316LN不锈钢的凝固模式,AP1000主管道材料在设计规范要求的成分范围内实际存在三种凝固模式:A(全奥氏体组织)、AF(先析奥氏体+枝间铁素体组织)、FA(先析铁素体+枝间奥氏体组织),成分调控空间较大。在铸造的冷速范围内,除了具有FA模式的316LN不锈钢在冷速大于10℃/s时从包晶反应部分转变为共晶反应外,总体上冷却速率对316LN不锈钢凝固模式的影响不大,但可影响其组织中δ铁素体相的形貌、6相向奥氏体相的固态转变过程以及各相中的化学成分分布。在热加工温度范围内,316LN不锈钢发生动态再结晶,具有AF凝固模式的铸态316LN不锈钢的再结晶温度和εc/εp值高于其他成分,其相应的锻态材料的再结晶温度也较其他成分的316LN不锈钢锻态材料高。δ铁素体可通过"PSN"机制为动态再结晶提供形核位置,促进动态再结晶的发生。先析出的“骨架状”δ铁素体为动态再结晶形核提供的位置多于后析出的“岛状”δ铁素体。“骨架状”δ铁素体的存在促进了动态再结晶,改善了有害元素分布,提高了316LN不锈钢的热塑性。在AP1000主管道材料成分范围内,“骨架状”δ铁素体含量增大,为动态再结晶提供的形核位置越多。但δ相增多的同时也会增大裂纹形成倾向,需要辩证看待δ铁素体的作用。δ铁素体在动态再结晶以及随后的静态再结晶过程中均发生了溶解和球化,应变量对δ铁素体溶解的影响程度大于温度以及保温时间的影响。400℃长时间时效处理后,316LN不锈钢的冲击功随着时效时间的延长逐渐下降,晶界部位的微区硬度随着时效时间的延长逐渐增大,总体上拉伸性能变化程度不大,但从断口形貌中可以看出时效处理后316LN不锈钢的塑性变差。在未添加C1-的模拟一回路水环境中,时效处理并未引起316LN不锈钢的应力腐蚀发生,但随着时效时间的延长样品表面氧化膜中的Cr、Mo氧化物含量减少,Ni的氧化物含量增多,氧化膜的稳定性逐渐下降。随着时效时间的延长,316LN不锈钢中未发生明显的析出行为,在时效10000h的样品的局部组织中可观察到极少量的富Cr、Si相,推测为Chi(x)相;在时效过程中,Cr、Mo、N元素逐渐向晶界部位扩散,使得晶界部位的Cr、Mo、N含量逐渐升高。基体中Cr、Mo、Ni、N含量增加会促进元素扩散,增大相应的M2N或M23C6相的析出倾向,提高了316LN不锈钢的微区硬度。