【摘 要】
:
复合材料因其比强度高、比模量大的特点以及可设计性强等优势,被航空航天领域广泛应用。而机械连接是复合材料应用中最常见的连接形式,由于加工过程中连接孔处的纤维被切断,这就造成连接处往往是结构中强度最弱的地方,因此,进行相关试验与有限元数值研究对提高整体结构性能具有重要的意义。本文首先以某型雷达前罩实芯连接区的连接件为对象开展试验研究,研究其失效模式、破坏载荷以及极限挤压强度;并基于Abaqus/Sta
论文部分内容阅读
复合材料因其比强度高、比模量大的特点以及可设计性强等优势,被航空航天领域广泛应用。而机械连接是复合材料应用中最常见的连接形式,由于加工过程中连接孔处的纤维被切断,这就造成连接处往往是结构中强度最弱的地方,因此,进行相关试验与有限元数值研究对提高整体结构性能具有重要的意义。本文首先以某型雷达前罩实芯连接区的连接件为对象开展试验研究,研究其失效模式、破坏载荷以及极限挤压强度;并基于Abaqus/Standard平台,建立相应的有限元模型,研究其在拉伸载荷下的应力传递和损伤的起始与扩展,并将仿真结果与试验结果进行对比,从而验证有限元模型的有效性。其次,对雷达前罩实芯连接区试验件开展吸湿饱和试验,得到试验件的吸湿特性,然后对吸湿后的试验件进行静力试验,考察其吸湿后的机械连接性能,并与室温干态下的机械连接性能进行对比,分析湿热环境对该雷达前罩实芯区试验件连接性能的影响,得到在湿热环境下试验件破坏载荷下降幅度较大,最终破坏模式为挤压分层,机械连接性能明显降低。最后,采用试验和有限元数值分析的方法研究了端距孔径比、螺栓直径、沉头螺栓以及衬套等结构参数对机械连接性能的影响,对比其失效模式、破坏载荷以及极限挤压强度,得到在一定范围内,增加端距孔径比和螺栓直径,有利于提高试验件最终破坏载荷,减弱损伤扩展,但并不是无限提高,提高幅度逐渐趋于饱和,沉头螺栓连接性能不如凸头螺栓连接性能好,衬套对机械连接性能的提高具有积极作用。
其他文献
海洋时代,正乘风破而来。地效飞行器在维护国家海洋安全、提高海陆交通运输能力、加强近海巡逻反潜、救援森林火灾等领域扮演着重要的角色,这对地效飞行器波浪水面地效区飞行性能提出了更高的要求,而目前国内外对该领域研究较少且考察变量单一。为进一步掌握不同波浪环境、飞行状态及螺旋桨滑流等因素对地效飞行器气动性能的影响,对地效飞行器水气两相流地面效应数值仿真研究具有重要意义及一定的工程应用前景。本文主要研究内容
超声电机(UM)主要依靠逆压电效应将定子的微观振动通过摩擦转换成转子的宏观运动,其中摩擦材料的性能直接决定着超声电机能量转换效率、机械输出性能、运行稳定性和使用寿命等。随着航空航天技术的不断发展,高性能超声电机系统对摩擦材料提出了更高的要求。为了提升超声电机的输出特性,本文采用性能更加优良的聚酰亚胺(PI)为基体设计新型的超声电机摩擦材料。通过热化学的方法将碳纳米管接枝到碳纤维,利用碳纤维-碳纳米
近年来,自转旋翼机在我国发展迅速,尤其是在新中国成立70周年阅兵式上,首次出现了特种作战用途的军用自转旋翼机,更使得大众对这种类型的旋翼类飞行器兴趣大增,但是目前的轻型自转旋翼机构型较为单一,且性能相差不大。本文根据目前市场保有量较大的两款轻型运动类自转旋翼机,同时结合我国目前对轻型运动类自转旋翼机的设计和适航审定要求,设计了一种新型的双推力自转旋翼机。论文首先对现有两款成熟的轻型运动类自转旋翼机
本文主要研究一种通过桨尖处安装的驱动螺旋桨带动旋翼旋转并实现对旋翼直接操纵的新构型旋翼。与常规的轴驱动直升机相比,旋翼产生的反扭矩被螺旋桨作用于旋翼上的驱动力矩所抵消。因此,不需要采取任何措施来平衡扭矩,消除了沉重的齿轮传动系统与反扭矩系统,有效地减小了系统的复杂性,从而简化直升机的整体结构,使机身结构更加紧凑。针对该新构型桨尖驱动旋翼,本文首先建立其旋翼模型。主要包括基于牛顿法建立的桨叶刚性挥舞
细胞外囊泡(EV)是细胞分泌到体液中的多种亚型双层膜囊泡的总称。由于携带来自亲本细胞的蛋白质、脂质、DNA和RNA等分子信息,细胞外囊泡不仅可以在细胞间进行信息传递,还可以作为液体活检中潜在的生物标志物和药物靶向递送的重要载体。外泌体、微囊泡和凋亡小体等细胞外囊泡因物理性质和生物组成的细微差异难以被区分开来,这无疑阻碍了对特定亚型EV群体的真实认知,不利于细胞外囊泡的应用研究。原子力显微镜(AFM
蛋白质-蛋白质相互作用(Protein-Protein Interaction,PPI)的研究,不仅对于阐明生命活动调节机制有重要意义,而且对于疾病的预防、诊断以及药物设计等方面也有重要价值。随着生命科学的发展,发现了大量的蛋白质结构域信息。近年来,基于结构域信息的蛋白质-蛋白质相互作用研究成为生物信息学的热点内容。然而,这些方法大多只考虑结构域间的数量关系,没有考虑结构域的内在属性。为解决这一问
直升机振动与噪声非常严重,主减撑杆是直升机旋翼动载荷传递至机身的必然路径,采用主动撑杆系统可有效降低直升机振动与舱内噪声。本文利用压电叠层作动器高驱动力、低驱动位移的驱动特性和悬臂梁-质量系统低刚度和高位移放大效率的动态特性,设计了压电叠层作动器驱动的主动主减撑杆动载荷控制系统,建立了压电叠层作动器驱动的主减撑杆结构动力学模型。以撑杆结构传递载荷为控制目标,采用基于Fx-LMS的自适应前馈控制算法
直升机在前飞过程中,旋翼的交变载荷传递至机身,使机身产生强烈的振动,严重影响直升机的飞行安全和飞行品质。随着振动主动控制技术的发展,直升机结构响应主动控制以其控制目标明确、控制效果好以及适应性强等优势,已成为解决直升机振动问题的有效方案。压电叠层作动器具有质量轻、响应速度快、机电转换效率高、工作频率范围宽等优点,成为直升机振动主动控制理想的作动元件。本文针对某型直升机的结构特征及振动的稳态谐波特性
充气式减速器以其重量轻、有效载荷大、稀薄大气下减速效果好等优点,正受到航天界越来越多的关注。对其气动性能进行有效预测,了解其整个减速过程的气动特性对工程设计及应用具有重要意义。本文首先基于飞行力学的方法,应用牛顿-欧拉法建立了减速器的运动方程,得到再入过程弹道参数;通过求解Kemp-Riddell公式和李斯修正式得到驻点热流值和气动过载随高度的变化规律。基于飞行弹道上的环境特点,确定了减速器全弹道
在军用和民用领域,倾转旋翼飞行器都有广阔的发展前景。获取准确的气动模型和状态空间模型是倾转旋翼飞行器设计和开展相关理论研究过程中的重要环节,系统辨识作为机理建模的补充,提供了一个相比单纯机理建模更加省时、相比风洞试验大大节约成本的实用方法。本文主要内容如下:首先,根据机理建模的方法在MATLAB/Simulink仿真平台中建立了倾转旋翼飞行器的非线性模型,基于小扰动线性化方法得到倾转旋翼飞行器固定