基于机器视觉的煤炭货运列车智能喷胶机器人关键技术研究

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:dcf0124
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着煤炭货运列车发运量的提高,以及选择从事传统煤炭行业的人员减少,煤炭货运列车喷胶作业的传统人工操作方式,已经逐渐无法满足需求。利用先进的机器视觉技术,提升货运列车喷胶作业的自动化与智能化水平,已经成为了中国煤炭铁路货运中亟待解决的课题。根据煤炭货运列车的工作流程和喷胶环节技术要求,经过实地调研,提出了基于机器视觉的煤炭货运列车智能喷胶机器人总体技术方案,确定了机器人主要技术指标,总结面临的关键技术问题,并提出相应的解决优化策略。针对机器视觉定位精度问题,建立了智能喷胶机器人主体的运动学模型,并验证了该模型的准确性。同时对摄像机进行标定,获得摄像机模型后,通过研究用于机器人手眼标定的四种传统解析算法,提出了一种用于降低手眼标定误差的拍照位姿生成方案,同时提出一种面向手眼标定的DLH-GWO-DE优化算法,进一步降低手眼标定误差。对于喷胶机器人视觉目标定位检测问题,设计了一套针对喷胶缝的图像定位算法,编写的程序能够处理白天或黑夜、原有密封胶充足或脱落严重等多种状态,算法自适应性较强。对基于HOG的支持向量机算法和基于Faster R-CNN的深度学习算法在煤炭货运列车喷胶作业关键结构目标检测上的效果进行了预实验,为提高基于滑动窗口检测算法的速度,提出了一种基于CPU多线程并行计算的改进算法。最后,对喷胶时需要有效避开的六种关键结构,使用基于Faster R-CNN的深度学习算法进行目标检测,检测效果良好。针对喷胶作业技术要求,提出Eye-to-Hand系统和Eye-in-Hand系统相结合的视觉配置方案,并搭建基于位置的视觉伺服控制的虚拟样机。随后利用前馈控制和PD反馈控制相结合的机器人运动控制算法,进行喷胶缝轨迹跟踪仿真,证明了系统的有效性。
其他文献
Al-Cu合金具有良好的高低温力学性能和耐磨性能,广泛应用于航空航天、建筑制造与装备等领域。Cu含量对Al-Cu合金的力学性能有着重要的影响。目前对Cu含量在5%以内的Al-Cu合金研究较多,而对于Cu含量超过10%的研究则鲜有报道,但是Cu含量的增加有利于提高Al-Cu合金的高温强度和耐磨性能,因此本文系统地研究了高含Cu含量对Al-Cu合金拉伸性能及磨损性能的影响。同时对比研究了液态压铸和流变
随着化石燃料的减少,全球掀起了对可再生能源和能源转换技术的研究热潮。在燃料电池和锌空气电池领域中,正极催化剂材料的催化活性、寿命以及成本成为了限制储能装置发展的瓶颈。通常电池正极采用的主要是贵金属铂基催化剂,但高昂的价格、易中毒、循环稳定性差限制了其大面积商业应用。因此,研究开发成本低、催化活性和稳定性较高的催化剂以取代贵金属催化剂具有重大意义。本论文以富含缺陷和含氧官能团且易于锚定和负载金属纳米
随着电气化高速铁路的交通运输体系占比逐年升高,这为加速构建碳中和电力网络体系贡献着不可替代的作用。由于高比例接入牵引供电网的变流器的电力电子变换作用,车-网耦合系统的可控性与能量传输的优质性得到了充分的体现。然而,这也提高了车-网耦合系统的交互失稳的风险。一直以来,人们侧重于研究交互失稳的低频振荡故障,但考虑谐振不稳定现象的研究文献则较少,从而阻碍了其在复杂实际工况中长期稳定运营的保障,其所导致的
近年来,我国轨道交通发展迅速,取得了举世瞩目的成就,但电分相和以负序为主的电能质量问题始终制约其进一步发展。电力机车通过电分相时机电过程复杂,容易出现故障并造成速度和牵引力损失,是牵引供电系统中最薄弱的环节。另外,电能质量关系着电力系统的安全经济运行,随着电气化铁路高速化与重载化,牵引供电系统中负序、无功、谐波等电能质量问题也亟待解决。目前,以同相供电装置为基础的贯通同相供电技术被认为是解决这些问
随着光伏发电技术的不断发展和各大城市轨道交通网络的加速建设,光伏电池在市域城轨列车和短途城际列车上的应用将是未来轨道交通新能源领域的发展方向之一。目前,对城市轨道交通车载光伏发电技术的研究仍然较少,搭载光伏电池的商业化城轨列车仍然处于探索阶段。城轨列车车载光伏面临三个方面的问题:一是城轨列车快速行驶过程中可能出现的光照快速变化带来的最大功率追踪难问题;二是在城轨列车运行线路环境条件下,光伏电池面对
高温超导(HTS)磁悬浮列车的运行需外界磁场与高温超导体相互作用并利用磁通钉扎特性来提供悬浮力以及导向力;因此,外界磁场变化会影响悬浮力、导向力以及在运动方向产生影响。同时,外界磁场的变化也会导致高温超导体内部产生交流损耗和内部温度升高,过大的温升将影响高温超导体的稳定性。所以研究外界磁场变化对于高温超导体的电、磁、热等特性的影响对于磁悬浮列车的运行稳定性有重要的意义。目前,高温超导磁悬浮的动态特
磷酸钙基骨水泥(Calcium Phosphate Cement,CPC)材料因其良好的生物相容性和骨传导性,成为常用的骨修复材料之一。但CPC力学强度不足和固有的脆性限制了其临床应用。另传统的CPC骨修复支架制备方式难以构建复杂结构并精确匹配骨缺损。受自然骨“无机/有机”复合结构的启发,通常将有机组分加入CPC提高其力学性能。然而,在水环境下有机组分与CPC间的低相互作用,以及有机组分自身的低力
铁路运输的高速度、高密度和大运载量发展使得电力机车的受流部件面临着严峻的考验。列车依靠弓网系统滑动摩擦取流,在运行时受电弓滑板要面临遭受接触线冲击碰撞、离线燃弧烧蚀以及恶劣环境侵扰的问题。因此,受电弓滑板材料需满足高强度、高导电、高耐磨等综合性能要求。然而,现役纯碳滑板用炭石墨材料本身作为一种多相、多组分、结构型的复合材料,受原料性质和制备工艺的影响存在裂纹、孔隙等内部缺陷,呈现出非均质的特征,在
高铁牵引供电系统高阻接地故障发生时,故障电流微弱,测量阻抗不足以引起阻抗继电器动作。电流增量保护采用设定电流突变量启动值的定量分析方法,不能有效保证灵敏性,正动率较低。针对上述问题,本文通过分析牵引供电系统高阻接地故障的电气特性,研究了基于车所同步监测的广域后备保护方案,在此基础上形成以能耗与电能质量监测数据为辅助信息的牵引供电系统高阻接地保护方案。本课题的研究工作主要如下:首先,利用MATLAB
具有一系列优异性能的结构陶瓷与许多现代新兴科学技术有着紧密的联系。然而,陶瓷材料的固有脆性导致其难以使用传统的塑性加工来成形复杂的高精度陶瓷零件,进而在很大程度上制约着结构陶瓷的发展。研究结构陶瓷的低温快速超塑性变形,可以为精密陶瓷零件的加工提供新的方向。本文通过恒速度和恒载荷拉伸实验及微观形貌分析,较系统地研究了交流电场辅助下3YSZ陶瓷的低温快速超塑性变形行为、伴随变形发生的微观组织和力学性能