快速反射镜的高精度控制策略研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:adf2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着航空航天、工业技术、生物医学等领域科技的不断发展,精密控制系统的应用越来越广泛,对精度的要求也越来越高。作为复合轴跟踪系统的精跟踪子系统,快速反射镜(FSM)系统对精度指标的要求也越来越严苛。本文以实际项目为依托,探索提高系统控制精度和扩大系统运行边界的方法。然后以此为目标,研究并完成了以下主要工作:1.建立全运行范围下,包括线性部分、非线性部分和噪声部分的完整系统模型。通过对系统物理结构的分析,建立了系统的理论线性模型,并以该模型与实际开环频率特性的差异作为依据,对理论参数进行校正,得到了与实际系统非常接近的理论线性白盒模型。为了更贴合实际,通过理论计算和实验测定,得到实际的非线性参数值,建立起了简化的非线性模型,包括饱和限模型和死区模型。同时,根据一组实测的噪声信号,建立了噪声模型。将该白盒模型再稍作变换,得到了系统的非线性状态空间模型,用于后续工作中控制器的设计、性能分析及性能极限的探索。2.采用状态增广和状态反馈理论,设计了双积分控制器。该设计方法调试简单,可以通过配置极点的方式来灵活调节系统性能,从而搜索到系统的物理极限。该控制器的各方面性能与单积分控制器相比均有所提升,完全可以满足项目方的指标要求。3.将状态反馈双积分控制器等价为古典类型的控制器。针对状态反馈双积分控制器实现难度大的问题,引入了降维观测器,并进行了模型的等价和降阶,最终将双积分控制器等价为古典控制器的形式来物理实现。等价后,该控制器可以看作由超前环节、陷波环节、积分环节和一阶微分环节等几种典型环节组合而成的古典控制器。这样就既保有了现代控制理论调试方便和控制效果良好的优势,又兼有了古典控制器实现简单的优点,具有较大的实际应用意义。4.探索系统的性能极限,得到了系统的性能极限曲线图。分析了系统的物理饱和限出现的顺序,发现系统的性能依次按照电压饱和限、加速度饱和限、速度饱和限的顺序受到影响。并据此作出了系统的性能极限曲线,对系统工作区域进行了划分。与单积分控制器相比,双积分控制器的线性工作范围增大,系统失控限也有明显提高,系统的性能极限得到提升。综上所述,本文针对快速反射镜设计出了一种精度指标高、极限性能好、且易于实现的双积分控制器。经仿真验证,该控制器稳态精度可达0.8″,低频段的跟踪精度与单积分控制器相比有明显提升,并且具有更大的线性工作区,更不易失控。
其他文献
随着科学技术的发展和人们对生活质量要求的提高,对不可再生能源比如煤,石油,天然气的使用,既不具备长期发展性同时也对空气质量产生负担。众所周知,氧气催化反应和水电解反应作为金属空气电池和燃料电池的重要理论组成,使得人们对这类催化剂的研究十分火热。其中Pt、Ru02、Ir02作为高效催化剂存在高成本,地球丰度低,以及不可同时作为多功能催化剂的缺点。因此,开发廉价的非贵金属甚至是三功能催化剂是电池在实用
甲状腺癌是内分泌系统最常见的恶性肿瘤,也是全球发病率增长最快的恶性肿瘤之一,其中乳头状癌约占甲状腺癌的80%。甲状腺乳头状癌的早期治愈率高达90%,然而,此类癌症淋巴转移率较高。因此,甲状腺乳头状癌的早期诊断对防止病情恶化有重要作用。在众多的诊断方法中,病理检查是敏感性和特异性最高的方法,面对日益增长的病理切片样本,如何使用计算机技术辅助病理学家进行诊断,减轻病理医生负担是当前亟待解决的关键问题。
随着我国高速铁路发展战略的不断深入,部分线路不可避免采用了有砟轨道结构。因此针对高速循环动载荷作用下有砟轨道存在的诸多问题,开展相关的技术分析刻不容缓。离散单元法的引入有效地解决了传统使用连续介质方法在分析散体道砟颗粒时特有的缺陷。然而该方法应用于该方面问题研究时仍然存在瑕疵,主要方面之一是数值模型中道砟的形态特征难以通过数值的形式与实际建立紧密的联系,导致了数值分析结果没有细致入微。因此为了更加
现今,网络需求高速发展带动着网络设备、网络应用等一系列的产业蓬勃发展。为了提高复杂网络的安全性,除了安装防火墙外,目前很多的系统都采用了基于误用检测的入侵检测系统(Intrusion Detection System,IDS)。因此,基于误用检测IDS的研究对于提高系统的安全可靠性有积极意义。Snort和Security Onion都是典型的IDS,由于Snort代码是开源的,且其结构清晰,容易修
随着经济飞速发展,能源缺口日益成为制约社会进步的一大隐忧。传统化石能源面临枯竭的现况下,开发高效、清洁、大储量的新型能源迫在眉睫。而在众多新能源类型中,太阳能因其取之不尽用之不竭、低廉、环保、分布广的特点被广为关注。在过去的几十年中,硅晶太阳能电池蓬勃发展,光电转换效率已经达到20%以上,在航天等领域大放异彩。然而硅晶太阳能电池生产过程污染大、能耗高,且质地脆硬,限制了其应用领域的进一步扩展。因此
近年来,农田重金属污染土壤问题愈发严重,尤其是农产品中镉(Cd)含量超标的问题更为突出。锌(Zn)可以缓解重金属Cd对农作物造成的毒害,也能增加农作物中Zn的含量,但是Zn如何缓解重金属Cd对小麦的毒害机理仍不明晰。镉小麦的问题引起了公众的关注,通过筛选出低积累镉小麦品种可减少小麦籽粒对重金属Cd的积累,但这一手段并不能总是达到农产品安全标准,迫切需要联合其它措施来增强这种效果。鉴于此,本研究选取
线性调频连续波(LFMCW)雷达被应用于汽车防撞、地下管道铺设、靶场测距、海军战术雷达、扫雷探测等诸多领域。但是,LFMCW雷达的自干扰问题严重影响了雷达性能的发挥,限制了其在更多领域上的应用。因此,充分抑制自干扰对雷达收发隔离度的提高,雷达工作性能的改善非常重要。目前,基于最小均方算法(LMS)的自干扰抑制方法以其高效的实现结构和出色的消除性能,使得它在LFMCW雷达中被广泛应用。针对在线性调频
光催化技术是一种环境友好型的污水处理方法,光催化反应利用半导体光催化剂表面的光生电子与空穴等活性物种,发生氧化还原反应将水体中的有机污染物氧化成无毒的小分子。然而,光催化剂对太阳光的吸收利用率低,光生载流子(电子-空穴对)复合情况严重,限制了光催化技术的应用。因此,对光催化剂进行改性,从而提高光催化剂活性,对光催化技术的发展尤为重要。反蛋白石独特的三维有序大孔结构产生的慢光子效应和多重光散射效应,
滚动轴承是旋转机械的核心部件,其工作状态几乎决定了整个机械装置的运行状况。旋转机械的故障中70%为轴承故障,因此滚动轴承故障诊断一直以来都是旋转机械故障诊断的热点问题。然而机械系统结构复杂,部件繁多,导致了传统的基于振动的诊断方法在复杂工况下故障诊断可靠性差、准确率低。本文对滚动轴承振动信号进行分析处理,结合盲信号分离和机器学习技术,研究复杂工况下轴承故障信号的提取及故障识别问题,提高滚动轴承故障
微流控芯片技术作为MEMS的典型代表,具有液体流动可控、消耗试样少、分析速度快等优势,在化学、生物学、工程学和物理学等领域发挥着越来越重要的作用。微混合器是微流控芯片