论文部分内容阅读
多糖是自然界中一种分子量较大的聚合物,研究表明多糖具有抗氧化,抗肿瘤和免疫调节等多种生物活性,而这些生物活性受众多因素的影响,如分子量、单糖组成和糖苷键的连接方式等。目前提取得到的绝大多数多糖在单糖组成和糖苷键的连接方式方面都极为复杂,将多糖降解后影响生物活性的各种因素均有所变化,从而无法清晰地说明生物活性的变化与分子量大小之间的确切关系。有报道表明茯苓中碱溶性茯苓多糖是一种以β(1→3)糖苷键为主的葡聚糖,将其降解后能够排除单糖组成的变化和糖苷键连接方式的变化对多糖生物活性的影响,因此本文选用碱溶性茯苓多糖作为研究对象,将其羧甲基衍生化后利用H2O2进行氧化降解以制备不同分子量的羧甲基茯苓多糖,并研究了羧甲基茯苓多糖抗氧化活性的变化与分子量之间关系。主要实验结果如下:(1)利用稀碱提取法得到白色片层状的碱溶性茯苓多糖,并测定了碱溶性茯苓多糖的理化性质和结构。实验中提取碱溶性茯苓多糖的得率大约为60%,结果表明该碱溶性茯苓多糖是一种由1→3糖苷键组成的,且不含有蛋白质、核酸、游离氨基酸、淀粉和酚类物质的葡聚糖,其中总糖含量为95.14±0.48%,糖醛酸含量为0.1661±0.036%,分子量大约为37×104Da。(2)利用二次加碱法对碱溶性茯苓多糖进行羧甲基改性。羧甲基衍生化后获得了取代度(DS)为0.903±0.007的羧甲基茯苓多糖(CMP-1)。红外光谱分析显示CMP-1具有在1640 cm-1和1430 cm-1附近的羧甲基特征吸收峰。GPC测得CMP-1的分子量为60.9×104Da,多分散系数α=3.56,表明CMP-1是一种分子量相对较大且分子量分布范围较广的多糖。(3)利用H2O2氧化降解法降解多糖并解析了多糖的结构。固定H2O2浓度为2%,反应温度为50℃,选取降解时间为40 min、80 min和120 min来对CMP-1进行氧化降解,最终得到了3种产物分别为CMP-1-1,CMP-1-2和CMP-1-3,其分子量分别为10.69×104Da,3.22×104Da和1.09×104Da,且3种降解多糖的取代度与CMP-1的取代度基本一致。高碘酸氧化和Smith降解分析得到CMP-1及其3种降解产物中各类型糖苷键的比例基本一致。刚果红实验证明了CMP-1及其降解产物都含有三螺旋结构。(4)研究了不同分子量羧甲基茯苓多糖的抗氧化性活性。研究结果表明不同分子量的羧甲基茯苓多糖均有一定的抗氧化性,包括对Fe3+的还原能力、对DPPH自由基的清除能力和对羟自由基的抑制能力。降解后低分子量的羧甲基茯苓多糖表现出更好的抗氧化活性,其中CMP-1-3抗氧化活性最好,且抗氧化效果随多糖浓度的增加而增强。(5)研究了不同分子量羧甲基茯苓多糖对细胞氧化应激的保护作用。研究结果表明不同分子量的羧甲基茯苓多糖均能够降低氧化损伤细胞胞外LDH的活力,降低细胞脂质过氧化产物MDA的含量,提高细胞内抗氧化酶(SOD和CAT)的活力,且低分子量的羧甲基茯苓多糖表现出更好的抗氧化活性。在100-1000μg/mL浓度范围内,CMP-1-2对维持细胞膜的稳定性,抑制脂质过氧化以及提高细胞内抗氧化酶活力的效果最好。本文通过二次碱化法制备得到羧甲基茯苓多糖并将其进行氧化降解,最终获得了分子量跨度较大的4种多糖,其分子量分别为60.9×104 Da、10.69×104 Da、3.22×104 Da和1.09×104 Da,实验结果表明这4种多糖组成和结构类似,只存在分子量方面的差异。抗氧化研究结果显示分子量的下降有利于多糖抗氧化活性的提高,细胞实验结果表明并非分子量越小抗氧化活性越好,这说明多糖的抗氧化活性可能还受某些特定空间结构的影响,以上结果可以为进一步探索分子量对多糖空间结构的影响提供相关依据。