论文部分内容阅读
采用电动静液压作动器(electro-hydrostatic actuator,EHA)的主动悬架在工作过程中由于信号采集传输和作动器响应等不可避免地存在时滞,进而导致主动力的产生与悬架实时状态不同步,严重影响悬架主动控制的效果。本论文主要考虑电动静液压作动器的时滞问题,进而对主动悬架的时滞进行控制研究。通过对电动静液压作动器进行力特性试验,拟合出了作动器的力模型。对作动器进行了动态特性试验,通过对试验数据处理,拟合出了作动器的动态数学模型,由数学模型可知作动器的时滞包括纯时滞环节和一阶惯性环节,即为主动悬架控制系统的时滞形式,分析得到了主动悬架的时变时滞特性。基于作动器的动态数学模型设计了内模控制器,并对控制器进行一阶泰勒级数的展开,得到了 PID控制形式,整定了控制器参数,实现了对作动器时滞的控制。对未考虑时变时滞补偿的Smith预估补偿控制器进行了改进,能够在线跟踪时滞变化引起的悬架补偿模型偏差,并对改进型Smith预估补偿控制器的稳定性进行了分析。将内模控制和Smith预估补偿控制进行结合得到了内模Smith复合时滞控制方法,仿真分析了在内模PID控制、改进型Smith预估补偿控制和内模-Smith复合时滞控制下主动悬架的动态性能。试制了电动静液压主动悬架的台架试验系统,开展了主动悬架的时滞控制试验。仿真分析表明,电动静液压主动悬架的动态性能在内模PID控制、内模-Smith复合时滞控制和改进型Smith预估补偿控制下均得到了改善,且改进型Smith预估补偿控制效果最好,但内模PID控制容易实现,主动悬架系统控制精度高。试验结果表明,采用内模PID控制作为主动悬架的时滞控制方法,在速度为4Okm/h行驶在C级路面和振幅为110mm频率为3Hz的正弦路面输入下,电动静液压主动悬架簧载质量加速度的均方根值在内模PID控制下分别减小了 10.1%和13.8%,验证了该时滞控制方法的有效性。