论文部分内容阅读
原子核质量和电荷的极限一直是物理学家最关心的问题之一。20世纪60年代,核物理学家提出由于量子壳效应,可能存在稳定或者长寿命的超重核,并预言这些超重核以质子数Z=114和中子数N=184为中心形成一个超重稳定岛。单粒子能级结构对超重稳定岛的位置起决定性作用。例如,自旋伙伴态2f5/2和2f7/2之间的劈裂较大时,超重核区质子幻数为Z=114,该劈裂较小时,这个幻数则为Z=120。对于质子数Z≥110的超重核,合成截面非常小,目前尚无法通过实验获得其单粒子谱的信息。
得到超重核单粒子能级信息的一种可行的方法是研究质量数相对较轻的、质子数Z≈100以及中子数N≈152重核区的原子核能谱。近些年来,实验上观测到了A≈250质量区的许多高自旋转动带。实验数据显示这个核区的原子核都具有稳定形变。由于形变效应,对于超重核区出现幻数比较关键的单粒子能级降低到A≈250质量区原子核的质子费米面附近。研究这些核的低激发转动谱可以揭示其组态结构、壳层结构以及稳定性等诸多信息,从而一方面对现有的理论模型进行检验,另一方面有助于深入认识超重核性质。
本文利用基于推转壳模型的粒子数守恒方法(PNC-CSM)系统研究了A≈250质量区原子核转动带的性质,并探讨了超重稳定岛的位置。粒子数守恒方法是曾谨言等人提出来的用来处理原子核中对关联的一种方法。不同于传统的Bardeen-Cooper-Schrieffer(BCS)或者Hartree-Fock-Bogolyubov(HFB)方法,在PNC方法中,体系的哈密顿量是在一个截断的Fock空间中直接对角化的,因此在整个计算过程中粒子数严格守恒,并且堵塞效应也是被严格考虑的。PNC-CSM的单粒子部分采用的是Nilsson哈密顿量。由于传统的Nilsson参数(κ,μ)是通过拟合稀土区和锕系区β稳定线附近核素的单粒子能级得到的,因此用这组参数来计算超镄核的单粒子能级时,与实验值的偏差很大,单粒子能级顺序在一些原子核中与实验不符。通过拟合A≈250质量区附近奇A核的单粒子能级,本文提出了一组角动量依赖的Nilsson参数(κ,μ)以及一组形变参数(ε2,ε4)。利用这个参数组计算的A≈250质量区奇A核的一准中子(质子)带的带头能量与实验值的均方根偏差为270keV(200keV),与传统的Nilsson参数相比,计算结果有了很大的改进,与采用Woods-Saxon势计算出来的结果非常接近。PNC-CSM对奇A核以及偶偶核转动惯量的计算结果与实验符合得非常好。通过分析费米面附近Nilsson能级的占据几率以及各条轨道对角动量顺排的贡献随推转频率的变化趋势,可以很清楚地理解这个质量区原子核的转动带产生回弯(上弯)的原因。即在Cm和Cf同位素中,主要是质子i13/2轨道对回弯(上弯)有贡献,随着质子数增加,在Fm和No同位素中,回弯(上弯)会由质子i13/2轨道和中子j15/2轨道之间的竞争产生。文中解释了为什么在这个质量区的一些原子核当中没有观测到中子j15/2轨道引起的回弯(上弯)。对一些实验上自旋指定不确定的组态,我们通过分析转动惯量以及跃迁能级,对其带头自旋进行了指定。另外我们对于奇奇核的Gallagher-Moszkowski(GM)双带的转动惯量进行了计算。其中一些包含Ω=1/2轨道的结果与实验有一定偏差,可能是Coriolis混合引起的。
利用这组新Nilsson参数,我们研究了超重核的壳结构、微观修正能以及α衰变能,探讨了超重稳定岛的位置。计算了超重核的形变Nilsson能级图,发现在Z=120和N=184处有比较大的能隙,这与传统的Nilsson参数预言的结果不同。基于新Nilsson参数组给出的单粒子能级,计算了Z=106至128的偶偶超重核的微观修正能量,发现在Z=120以及N=182处,微观修正能量最大。进一步,基于连续介质模型,考虑上述微观修正后,计算了Z=108至128偶偶超重核的α衰变能,发现在同中子素链上,α衰变畿在Z=120处出现跳变,在同位素链上,α衰变能在N=182处出现跳变。综合以上结果,这组新Nilsson参数预言的超重岛中心为Z=120和N=182。