自旋轨道耦合相关论文
基于狭义相对论的基本观点,研究了特征X射线的产生机理,分析了电子自旋轨道耦合对特征X射线波长的影响,导出了一个计算特征X射线波......
纳米尺度磁性材料的研究是未来自旋电子学器件朝小型化、多功能化方向发展的基础。研制新型磁性纳米材料,并揭示其物理特性及其与......
在过去20多年里冷原子物理的研究获得了蓬勃的发展,一个极为重要的原因是由于两个冷原子间的有效相互作用形式简单而且强度精确可调......
溶液法生长的卤化铅钙钛矿(lead halide perovskites,LHPs)具有制备成本低、缺陷容忍度高、带隙易调控等优点,在下一代光电器件具有......
自旋霍尔效应从理论预测到实验发现都证明了即便没有外磁场在非磁性材料中也能够实现霍尔效应。利用自旋霍尔效应能够在横向响应外......
碳纳米管作为纳米体系的典型材料之一,其独特的几何结构和物理性质,使其在纳电子学领域,以及未来的量子器件中都可能有重要应用。......
本论文报道了几种典型的关联电子体系材料的合成方法、晶体结构与磁学、电学性质。系统的研究了关联电子体系材料在低温下自旋的关......
研究了自旋轨道耦合量子点中的量子相干效应.运用输运电子的全计数统计方法计算系统的平均电流、散粒噪声和偏斜,发现体系存在自旋......
玻色-爱因斯坦凝聚体与高精细单模Fabry-Pérot光学腔的耦合不仅拓宽了原有腔量子动力学的研究,而且为用超冷原子模拟约瑟夫森结的......
本文主要研究了在铁磁-半导体-铁磁(F/S/F)系统中电子的量子输运特性,分别考虑了Rashba自旋轨道耦合和Dresselhaus自旋轨道耦合作用,......
本文对玻色-爱因斯坦凝聚做了简单的概述,对利用冷原子来做量子态的传递(慢光)的理论和实验做了概述。对在超冷原子玻色-爱因斯坦凝......
玻色-爱因斯坦凝聚(BEC)现象作为一种宏观量子效应,自1995年实验上实现以来,一直受到广泛的关注。BEC所具有的内禀非线性和实验上的......
冷原子物理体系中自旋轨道耦合玻色–爱因斯坦凝聚体(Bose-Einstein Conden-sates,BECs)是探索量子力学未知领域的重要实验操作平台,......
目前,超冷原子物理是物理学备受关注的一个热门研究领域,尤其利用激光与中性原子的相互作用产生了人工规范场,实现了玻色-爱因斯坦......
学位
非平庸拓扑边缘态因其对材料的局部缺陷和无序具有很强的鲁棒性,因而,在自旋电子学和量子计算中具有重要的应用。其中,最初用于描......
耦合双量子点的每个量子点能级都可以通过门电压独立地调节,并且具有固有的量子相干性,因而成为研究各种量子力学效应和开发相关量......
非芳香性有机发光化合物因其对于揭示生物体自发光具有重要作用,且由于具有良好的生物相容性和成本低等优势在生物影像、防伪及化......
近年来,拓扑绝缘体引起了物理学研究者广泛的兴趣。电子在发生拓扑相变的拓扑绝缘体的界面上具有单向传输的稳定性,这使得其在实现......
在凝聚态物理中,自旋轨道耦合通常是指带电粒子的自旋角动量和轨道角动量之间的耦合作用,这种耦合作用是导致自旋霍尔效应、拓扑绝......
近年来,二维(2D)V-V族二元材料受到广泛关注,这主要得益于不同V族元素之间的化合可以产生诸多理想的物理性质,如适中的能隙、高载流......
在量子力学中只有很少的情况下能够得到系统传播子的精确表达式,而考虑自旋轨道耦合时求解传播子将更困难。在本文第二章中利用相......
Sr2RuO4超导体是一种和铜氧化物La2CuO4结构相同的超导材料,并且很有可能是手征p波超导体,但是关于Sr2RuO4的配对对称性问题仍然存......
文章基于粒子数分辨的量子主方程,研究了串联耦合双量子点中,自旋轨道耦合依赖的电流有限频率噪声谱.研究发现,在电流有限频率噪声......
冷原子体系作为一个高度相干的纯净体系提供了一个重要的量子系统的研究样本,得益于玻色-爱因斯坦凝聚的实验实现与光晶格强大的可......
在第一项工作中我们从理论上研究了光在两个耦合的非线性波导中的传播。在两个波导之间存在着静态传播常数失谐,我们沿波导的传播......
利用周期驱动操控冷原子一直是科研工作者的研究热点。激光技术的迅速发展,对实验上操控冷原子隧穿动力学提供了有效的实验手段。2......
第三代半导体器件具有高能效、低功耗和高极端性能,在电子电力、微波射频和光电子等领域展现出广泛的应用前景。基于第三代半导体......
热电材料是一种可以利用材料内部载流子输运实现热能和电能相互转换的功能材料。SnSe晶体作为一种性能良好的新型热电材料,具有环......
对相与相变性质的研究一直是凝聚态物理学领域一个重要的研究课题。量子相变,即体系在绝对零度以及热力学极限下由哈密顿量中参量......
在光镊等技术中,利用光与物质相互作用的光学力对颗粒的操控,在理论与实验上已经被广泛的研究探讨。因为光镊的操控方式具有无侵入......
在量子输运中,系统的输运特性完全可以由电子的全计数统计描述,这是因为n个电子隧穿到达收集电极的几率分布的所有信息可以从电子......
等温压缩系数κT,是热力学物理中的一个重要物理量,可用来测定液体的流动性、固体的刚度。而在冷原子中,这个物理量广泛应用于判断......
新奇二维结构的研究一直受到广泛关注。由于其中的量子限域效应明显,二维材料常伴随拓扑、超导、铁磁和电荷密度波等丰富的量子现......
随着微电子技术的发展,在微观尺度上控制磁相互作用成为一个重要的研究课题。其中最有效的方法之一是通过Ruderman-Kittel-Kasuya-......
随着信息数据膨胀的加速发展,传统的只利用电子电荷属性的电子器件已经无法满足人们对元器件微型化、集成化等方面的迫切需求。因......
在量子世界中,粒子与波没有明确的界限。德布罗意提出所有具有质量的粒子都具有波动性。在超冷原子中,它们较大的德布罗意波长会使......
根据量子光学理论,激光与原子相互作用不仅引起原子在其本征能级之间的跃迁,而且还将彻底改变系统的能级结构和本征函数性质。将激......
GaN基宽禁带半导体作为第三代半导体材料是目前国际半导体科学与技术研究的前沿,在自旋电子学领域的研究也正受到越来越多的重视。......
本文采用量子波导理论研究了多Stub一维介观结构中的自旋输运,我们考虑了Rashba效应和Dresselhaus效应.发现自旋翻转透射系数随Stu......
在二维半导体中的黑磷出现并成功应用之后,Zhang等以第一性原理预测了砷稀和锑烯是宽禁带间接带隙半导体。由于二维半导体大多都无......
自旋轨道耦合与自旋霍尔效应,自旋动力阻尼,拓扑绝缘体,斯格明子等新效应都有很强的联系,成为了研究热点.Fe3O4是一种半金属材料,......
自旋轨道耦合对自旋的相关现象有至关重要的作用,反演不对称性引起零场自旋劈裂,是近几十年研究的热点[1]-[2].与此相关的一个现象......
石墨烯1 的发现激起了研究人员对二维材料的极大兴趣,而新型二维材料二硫化钼由于带隙可控受到广泛关注.过渡金属硫化物MXY(M=Mo,W......
一维纳米材料与相应体相材料相比,其较低的维度和较小的配位数使得此类体系可以展现出许多新奇的性质。在不同的一维或准一维体系......
核的自旋轨道耦合作用是核力的重要组成部分,对解释原子核壳结构和幻数十分重要。然而,一直以来,它只在核结构领域被广泛研究,在核反应......
在4d/5d 过渡金属氧化物中,自旋轨道耦合的大小可以与那些基本的相互作用相比,比如电声子或者on-site 库伦相互作用.在最近的有关4d ......
Lieb lattice模型因其具有丰富的拓扑性质[1]和受拓扑保护的局域态,一直是研究拓扑性质的重要模型。在此,我们通过设计不同的耦合连......
会议
物质的物理与化学性质由物质中的电子结构所决定,因此测量物质中的电子结构对于研究与理解物质性质起着至关重要的作用。其中,光电子......