【摘 要】
:
通过高能量密度的等离子电弧对焊丝或粉末进行加热熔化,然后将熔化的焊材层层堆敷进而熔敷出所设计的构件的方法被称为等离子电弧增材制造技术。该方法现阶段主要应用于尺寸大、形貌复杂的构件。由于等离子电弧的能量密度高且集中,其熔敷过程容易导致熔池溢流现象的出现,因此,如何减少熔滴溢流进而减小熔敷层坍塌的几率是等离子电弧增材制造是一个急需解决的问题。在熔滴溢流后导致增材制造层形貌可能导致后续的堆积过程与原本计
论文部分内容阅读
通过高能量密度的等离子电弧对焊丝或粉末进行加热熔化,然后将熔化的焊材层层堆敷进而熔敷出所设计的构件的方法被称为等离子电弧增材制造技术。该方法现阶段主要应用于尺寸大、形貌复杂的构件。由于等离子电弧的能量密度高且集中,其熔敷过程容易导致熔池溢流现象的出现,因此,如何减少熔滴溢流进而减小熔敷层坍塌的几率是等离子电弧增材制造是一个急需解决的问题。在熔滴溢流后导致增材制造层形貌可能导致后续的堆积过程与原本计划相差较大,得到的工件形貌尺寸与原本设计的模型差异较大,因此,提高增材制造熔敷层的精度是本文解决的另一个问题。本文首先设计磁控等离子电弧传感器来减少熔敷层热量累积导致的熔池溢流的现象,然后建立了磁控等离子电弧增材制造系统,对单道多层等离子电弧增材制造成型信息进行检测及自适应控制展开了研究。(1)本文通过对摆动等离子电弧及熔池的受力分析,并综合磁控摆动电弧方法与等离子电弧增材制造方法设计了磁控等离子电弧焊枪,在此基础上搭建磁控等离子电弧增材制造平台;通过磁控控制电弧在增材制造熔敷层上摆动,有效的减少了沉积层表面累积的热量,减少了熔池中液态金属的凝固时间。从而减少了等离子电弧增材制造过程中由于热量累积导致熔池溢流现象。(2)本文对磁控等离子电弧增材制造层形貌检测方法进行设计与研究,通过建立弧长与各参数的数学模型分析得到了检测熔敷层形貌尺寸的参数,主要以增材制造时的熔敷电流、熔敷电压、励磁电流频率以及焊枪高度检测的输入量,然后进行了大量的工艺实验,获取了焊接电流、焊接电压、励磁电流频率、焊枪高度以及增材制造层形貌尺寸数据。(3)接下来对实验数据实施归一化计算,成功构建BP神经网络熔敷层高度及层宽预测模型,针对这一模型进行训练及验证处理,进而确定了4-13-2的BP神经网络结构,并建立了神经网络预测模型;通过对神经网络模型的训练,实现了增材制造过程中熔敷层形貌尺寸的预测。(4)针对磁控等离子电弧增材制造技术的特点,设计了磁控等离子电弧增材制造熔敷尺寸控制器,通过该控制器对增材制造熔敷层形貌尺寸进行实时调控,进而实现等离子电弧增材制造熔敷层的精确成形。(5)最后,在本文所搭建的平台上通过本文所述的方法制造相关构件,实验结果表明,需制作的构件的形貌规则、成形精度高,无明显缺陷发生。因此采用本文所设计的磁控摆动等离子电弧增材制造形貌检测及自适应控制系统,可以提高等离子电弧增材制造的成形精度。
其他文献
人类社会的发展伴随着大量的能源消耗,为了解决当前遇到的能源危机,人类急需开发一种清洁能源来替代传统的化石能源。太阳能作为一种理想的清洁能源,有着巨大的开发前景,如何高效地利用太阳能成为全球的研究热点之一。有机太阳能电池是一种通过光伏材料将太阳能转化为电能的装置,由于具有重量轻、可制成柔性材料、易于加工以及成本低等优点引起了学术界和产业界相关研究人员的广泛关注。活性层材料(包含给体材料和受体材料)作
近来年,随着全球气候变暖的加剧和与日俱增的传统化石能源消耗,引起了严重的环境问题和能源危机。为了应对当前所面临的这些严峻问题,急需开发清洁能源及其设备。超级电容器由于其具有高的功率密度、快速的充放电速度、长的循环寿命、安全性和可靠性较高以及环境友好性等优势作为一种能量转换和存储设备被广泛研究。MoS2作为一种典型的具有类石墨烯“三明治”结构的TMDs材料而在超级电容器领域被广泛研究。MoS2的层间
随着现代航空航天业对发动机热端部件材料的使用性能要求逐渐提升,镍基高温合金作为其主要材料,发展达到了一个瓶颈期。传统钴基高温合金的高温抗热辐射性、抗热疲劳性和焊接性能十分优异,但由于钴的金属特性导致高温强度低于镍基高温合金。最近一种新型钴基高温合金(Co-Al-W基高温合金)被证实存在γ′-Co3(Al,W)强化相,该钴基高温合金不仅具有传统钴基高温合金性能,且高温强度比镍基高温合金更佳。Co-A
随着我国磨矿工业的快速发展,非金属矿粉被广泛应用于工业、农业、建筑等领域。海泡石是一种非金属矿石,经研磨后的海泡石矿粉由于其良好的吸附性、催化性,成为了众多行业不可缺少的原料。常采用搅拌磨机进行研磨获得超细海泡石矿粉,在研磨设备中立式搅拌磨机因其结构简单、磨矿效率高、操作方便被普遍使用。如何降低研磨后矿粉的粒径及分布宽度,提高矿粉质量已成为国内外学者广泛研究的热点。由于海泡石一种非金属黏土矿物,在
本文给出了非卷积Calderón-Zygmund算子T在乘积Hardy空间上的有界性.令T1*(1)=T2*(1)=0,当 max((?))
自2004年石墨烯被成功制备以来,其卓越性能和潜在应用引起了科学家的广泛关注。研究发现,石墨烯的众多良好性能主要来源于狄拉克锥。为此,人们一直致力于寻找具有狄拉克锥的二维材料。然而,由于狄拉克锥形成条件极其苛刻,相比其他性质的二维材料,二维狄拉克半金属的相关报道仍然较少。并且,目前仅有少数材料的狄拉克锥在实验上得到证实。因此,寻找具有良好性质且可合成的二维狄拉克半金属仍是一个值得研究的课题。基于此
航空航天、新能源等科技领域的迅猛发展,使得对应用于极端条件下(高温或酸碱腐蚀)的结构材料的需求日益增强。碳化硅(SiC)因具有高硬度、耐磨损、耐高温、低密度等优异的物理力学性能,成为一种理想的结构材料,被广泛应用于航空航天、国防军工等领域。然而,SiC的室温抗弯强度和断裂韧性差,这极大地限制了其在各领域的发展和应用。为了提高SiC陶瓷的断裂韧性,常引入第二相粒子,主要包括颗粒、晶须或纤维增韧等。本
镍基单晶高温合金由于其优异的高温性能,被广泛应用于制造航空发动机涡轮叶片。随着对高温合金性能要求的提高,使用了大量的难熔元素来提高其承温能力,但过量的难熔元素加入会促进拓扑密堆(TCP)相的析出,反而消耗γ基体中的合金元素,削弱γ基体的固溶强化效果。因此,TCP相的存在严重限制了高温合金的使用。Cr作为最早出现的高温合金Ni80Cr20系列中的重要元素,是TCP相中μ相的形成元素。Re是第二代镍基
氧化铪(HfO2)基铁电薄膜具有与互补金属氧化物半导体(CMOS)工艺兼容、特征尺寸微缩能力强、制备工艺成熟等特点。作为一种新型铁电材料,HfO2基铁电薄膜在铁电存储器的应用中表现出巨大的潜力,有望引领新型存储器的发展方向。III-V族半导体因其优越的电子迁移率正被探索作为金属氧化物半导体(MOS)器件中的沟道,这使得器件能够进一步的缩放,实现更高的开关速度和更低的功耗。结合两者的优势,以III-
国际上与卷烟有关的行业已先后开发出一系列行之有效的降焦减害措施,但随着这些工业减害技术的应用,烟气品质受到影响、成本提高、外源性添加物安全性等问题随之产生,故而烟草制品的减害逐渐向控害转移,使得对烟草制品控害的源头—烟叶原料品质的解读愈发重要,尤其是烟叶原料的安全性。本文以烟草原料重点关注安全性成分生物碱、亚硝胺、芳香胺为考察目标,弄清楚不同产地、不同等级、不同部位烟梗安全性指标含量水平及差异性与