论文部分内容阅读
随着科学技术的发展,在自然科学和社会科学领域中广泛存在的非线性问题,越来越引起人们的关注,而且许多非线性问题的研究最终可归结为非线性发展方程来描述,因而如何得到它们的精确解对研究相关的非线性问题非常重要。本文中,将系统介绍几种非线性发展方程的求解方法,如齐次平衡法、双曲函数法、函数变换法以及Jacobi椭圆函数展开法等。 第一章介绍孤立子理论发展概况,详细推导了在非线性方程理论研究中具有重要意义的非线性波动KdV方程,并且研究了孤立子相互作用问题,分析表明孤立子碰撞以后形状保持稳定。 第二章运用行波法,精确求解了KdV方程和Sine-Gordon方程。获得两种重要的行波解——周期解和孤立波解,并且定性分析了解的几何性质,且将孤立波和同(异)宿轨道联系起来。 第三章介绍齐次平衡法,采用此法找到了KdV方程的六种精确解:精确平衡解、孤立波解、有理解、多项式与指数函数混合解、多项式与三角函数混合解,作为应用给出了二维色散长波方程组的定态解、孤立波解、非孤立波解等。 第四章介绍双曲函数法,其基本思想是将非线性发展方程的行波解表示成双曲正切函数形式解,并对近年来发展起来的双曲函数展开法加以改进,采用新的变换函数,得到了KdV方程、非线性Klein-Gordon方程和组合KdV方程的一些新的孤立波解。 第五章首先采用2001年提出的Jacobi椭圆函数展开法和本文由此扩展而来的双椭圆函数展开法,求解了一大类非线性发展方程,得到了一系列新的周期解。而且这些周期解在极限条件下可以退化为孤立波解,由此表明此类展开法是一种高效实用的方法。为了讨论了Jacobi椭圆函数展开法的适用性问题,我们引进“秩”的概念,指出只要非线性发展方程的各项的“秩”满足相同的奇偶性,就可以用这种展开法求解。其次,介绍在椭圆函数展开法基础上发展而来的,利用Lamé函数求解非线性发展方程多级近似解的方法,并且求解了非线性Schr(?)dinger方程,非线性BBM方程,Zakharov方程,KP方程,Boussinesq方程和立方非线性Schr(?)dinger方程等方程。最后,从Legendre椭圆积分和Jacobi