论文部分内容阅读
H-矩阵是矩阵理论中非常重要的一类特殊矩阵,它广泛应用于计算数学、数值代数、经济数学、电力系统理论和控制论等众多科学计算和工程应用领域.H-张量作为H-矩阵的扩展,在高阶马尔科夫链、量子纠缠问题、超图理论、磁共振成像、自动控制、盲源分离、模拟以及多项式优化等领域中具有广泛的应用.矩阵Schur补在大型矩阵计算的降阶处理和求解线性方程组的预条件方法中具有重要的作用,是我们关注的研究热点问题之一.本文研究了H-矩阵及H-张量的一些性质、判断方法及应用,主要结果和创新点如下.(1)研究了 γ(乘积γ)-对角占优矩阵Schur补的结构、性质及其在求解大型线性方程组上的应用.首先,我们给出了 γ(乘积γ)-对角占优矩阵的Schur补的对角占优度,并证明了γ(乘积γ)-对角占优矩阵的Schur补的圆盘定理,改进和推广了相关结果.进一步,由于迭代法是和谱半径估计密切相关的,因此我们给出了 γ(乘积γ)-对角占优矩阵及其Schur补的逆矩阵的谱半径估计.当线性方程组的系数矩阵为γ(乘积γ)-对角占优矩阵时,我们给出了求解此类线性方程组的一种新的迭代法.在此基础上,我们将该迭代法与基于Schur补迭代法相结合,建立了一种新的迭代算法——基于Schur补的迭代算法,并证明了该算法的收敛性.最后,给出了一些数值例子说明基于Schur补的迭代算法在求解此类线性方程组时不仅能快速降阶,而且在收敛性方面也有很好的效果.(2)给出了 Nekrasov矩阵的Schur补在求解线性方程组上的应用.首先给出了 Nekrasov矩阵的Schur补的逆的谱半径估计.进一步,我们引入了基于Schur的超松弛迭代法(SSSOR)和基于Schur的共轭梯度法(SCG)通过降阶来求解线性方程组,并给出相应的数值算例说明了该方法的有效性.(3)提出了不可约γ-Nekrasov矩阵和不可约γ-S-Nekrasov矩阵两种广义不可约Nekrasov矩阵的定义,并研究了相关矩阵与不可约H-矩阵之间的关系.(4)研究了H-张量在Hadamard积下的封闭性.证明了强H-张量的Hadama-rd幂的Hadamard积仍然是强H-张量.进一步,我们对H-张量的Hadamard积的比较张量的最小实特征值进行了界定,由强H-张量的特性得到了这些特征值的边界.