论文部分内容阅读
当前室内空气污染问题日益严重,有害气体长期影响着人们的身体健康。等离子体凭借高能活性基团和氧化粒子不仅可以有效分解甲醛、TVOC等主要空气污染物,而且能够杀灭细菌和病毒。等离子体技术作为一种新兴的去除空气污染物手段,具有广阔的应用前景。本文通过电场仿真、流体模拟与放电实验相结合的方法,探究了大气压下形成稳定辉光放电的条件,设计了辉光放电极、阵列式放电模块、初效过滤模块、涵道装置、尾气处理层与交流电源。初步研制了针对甲醛处理的等离子体室内空气净化器,对于推动等离子体技术应用与空气净化领域发展具有重要意义。首先,本研究结合单侧介质阻挡放电与非均匀电场分布机理,设计了空心桶型碳纤维螺旋式与双侧金属片式两种构型的放电极,为净化器实现稳定的大气压辉光放电提供了设备支持。通过Maxwell软件搭建电极模型,进行空间电场与电场线矢量分布仿真;在相同电压下,双侧金属电极的气体击穿场强(E≥3×106V/m)区域半径,较碳纤维螺旋式电极增大了35.5%,形成的弥散状等离子体体积扩大了约1.83倍。为了提高等离子体去除污染物的效率,设计了基于两种电极的多排阵列式放电模块,具有良好的辉光放电特性。其次,设计了配备ISO Coarse 70%级别滤芯的折叠式初效过滤模块,能够有效去除PM2.5及更大的固体颗粒物;经过与放电模块的调配测试,设计了参数为输出最高电压6k V、最高频率20k Hz的等离子体交流电源。通过GAMBIT和FLUENT流体软件分析了单根螺旋、双侧金属片与百叶窗三种阵列式放电模块在直通式风道内对空气流动的影响;模拟了气流在两侧进风型与扩口型风道内的速度矢量分布,结果表明增加气流的流通路径与配合交错式放电模块有利于提高污染物去除效率。测试了单根螺旋式电极在60分钟内不同电压下的臭氧排放,结果均满足国家安全标准;并设计了以Mn O2为催化剂、活性炭为载体的尾气处理层,用于吸附分解辉光放电形成的臭氧。最后,对16根铜柱与14根镀镍铜丝两种螺旋式电极模块进行了放电测试,均可以形成大面积辉光放电,产生均匀性良好的等离子体。通过3m3实验净化舱与HTV型甲醛检测仪,测量甲醛气体在常温常压下的自然衰减,50分钟内甲醛浓度降低了大约1.85%,衰减曲线斜率约为0.0007。将三排放电模块组装为单个净化层,共含有21根辉光放电极,并在净化舱中测试对甲醛的初步去除效果;15次的数据记录表明,甲醛浓度降幅为30.53%,约为自衰减的16.5倍,而搭载120至135根电极的净化器样机理论上的甲醛去除率可达90%以上。