周期结构压电俘能器动态性能分析与优化

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:supermilk009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球绿色能源发展日新月异,从环境振动中俘获能量并为微机电系统供能已成为学术界和产业界研究开发的热点。压电俘能器具有加工难度低、俘能效果好且应用范围广等优势,因此备受研究人员的青睐。悬臂梁式压电俘能器仅在环境激振频率与其固有频率相近时才可产生可观的响应电压,而环境中激振频率一般较低,传统压电梁的固有频率远大于环境中激振频率,难以满足共振条件。为解决以上问题,本文以两种周期结构压电梁为研究对象,利用有限元软件分析其低频与宽频性能、力学性能和俘能性能,并探究其俘能性能的影响因素,这对设计超低频、宽频带、高性能的压电俘能器具有参考价值。本文的主要研究工作如下:(1)对单晶压电梁进行机电建模,推导出其输出电压的表达式,明确影响压电梁输出电压的因素。将压电梁的参数代入表达式,计算结果表明了激振频率在压电梁固有频率附近的必要性,为后文的研究提供理论依据。(2)利用有限元软件求解折叠梁和螺旋梁两种周期结构压电梁的低阶固有频率。讨论了段数对固有频率的影响,结果显示增加段数能降低两种梁的固有频率,拉近两种梁的邻阶固有频率,有效改善其环境振动俘能性能,当段数大于8时,折叠梁的低频性能相对较好,但螺旋梁的宽频性能优于折叠梁。(3)对比分析了两种周期结构压电梁与传统结构压电梁的强度、模态振型与应力和响应电压。结果表明传统梁虽强度优于周期结构梁,但其低频与宽频性能远不如周期结构梁,且响应电压也低于周期结构梁。同时讨论了段数对各项性能的影响,结果表明增加段数会增大周期结构梁承受的应力;改变段数不会改变梁的振型,且模态应力始终在两段梁的拐角处;螺旋梁的响应电压随段数的变化具有一定的周期性,折叠梁的响应电压随段数的变化呈现单调性。(4)探讨了压电片与基板厚度,梁的长度,质量块大小,质量块位置,夹持位置,压电片布置方式和梁中心轴间距对螺旋梁和折叠梁俘能性能的影响,并选用正交试验法对两种梁进行结构优化。结果表明,优化后螺旋梁和折叠梁的一阶固有频率分别降低了15.59%和27.34%,一阶响应电压分别提高了200.79%和173.33%。
其他文献
过渡金属氧化物的理论比容量是商用石墨负极的2~3倍,并具有良好的安全性,因此被认为是极具应用潜力的负极材料之一。在过渡金属氧化物负极材料中,Fe3O4和SnO2都具有较高的理论比容量,分别为926 m Ah/g和1494 m Ah/g。但是它们在Li+嵌入/脱出的过程中会出现较大的体积变化,Fe3O4的体积膨胀为100%,而SnO2的体积变化更加剧烈,可达300%,导致锂离子电池无法实现长循环和快
溴化锂吸收式制冷系统中LiBr-H2O溶液对不锈钢、铜和铜合金都具有较强腐蚀性,直接影响制冷系统的使用寿命且造成系统性能下降。钛合金具有耐腐蚀性极好、密度小、硬度大等优点,成为一种代替铜合金制造换热管的良好选择。但是钛导热系数仅为18.7W·m-2·K-1,远低于铜铜导热系数401W·m-2·K-1。因此,研究钛管外液膜流动行为及相关传热特性,开发高换热性能钛材管有着十分重要意义。本文通过对水平管
离子通道膜中纳米孔道的大小与密度是影响其盐差能转换的重要因素,然而,现有技术对于孔径孔密度的调控存在操作复杂、成本高等问题,因此,制备孔径和孔密度可控、孔道排列规整的纳米通薄膜仍旧是技术难点。由于嵌段共聚物的特殊性,通过合理设计和精准合成,可用于制备理想的离子通道膜。本文通过合理的分子设计,合成了可用于制备纳米通道薄膜的嵌段共聚物,并通过核磁共振氢谱、红外光谱、凝胶渗透色谱测试对其结构、分子量、多
中子探测,是人类认识宇观与微观世界的关键技术;在退役核设施及放射性废物、聚变反应堆、核爆试验、核电站及散裂中子源装置等发生核裂变、核聚变瞬态核过程的场所,测量中子的场合就必然伴随着gamma射线本底的干扰,因此中子探测涉及到强gamma本底辐射下的n/γ甄别技术。n/γ甄别探测,主要有单晶闪烁体、液体闪烁体和更具有低成本与大尺寸制备优势的有机塑料闪烁体三类。然而,现有的有机塑料闪烁体中子探测器尚未
荧光生物传感器的构建关键在于荧光探针的设计。DNAzyme作为一种核酸酶,非蛋白酶,对反应条件(如温度,pH)要求不苛刻,具有高特异性识别及剪切效果,且不容易引起机体的免疫反应,非常适合于生物传感的构建用于体内或体外生物分子的分析检测。G-三联体是G-四联体折叠过程中形成的中间体,它具备G-四联体相似的化学性质,且相比G-四联体更容易设计,与Th T结合后在一定激发下能发射强荧光,更适合于荧光探针
癌症,具有很高发病率和死亡率,给许多家庭和整个社会都带来巨大的痛苦和负担。但是,临床研究表明,如果能够及早发现癌症然后通过配合恰当的治疗手段,绝大多数患者是可以治愈并且没有复发的风险。三磷酸腺苷(ATP)是一种至关重要的多功能生物分子,主要位于线粒体中,参与了许多细胞过程。据报道,癌症组织中的ATP浓度异常高于正常组织,因此,ATP可以作为癌症的生物标志物。沸石咪唑酯骨架结构材料(ZIFs)是一种
CO氧化在化学能量转换和气体污染物控制中具有重要的意义,它是水汽变换反应的基础步骤,是燃料电池中从重整H2中去除CO的关键步骤。CO催化氧化作为一个重要的催化模型反应,对催化研究具有重要意义。CO催化氧化低能耗、对低浓度CO消除效果好。负载型贵金属催化剂因其CO氧化催化活性高、低温效果好等优点而被广泛关注,但也存在价格昂贵,活性组分易流失等缺点。近年热点关注的单原子催化剂虽做到了贵金属原子的最大利
本文研究Stokes方程的基于梯度重构方法的自适应有限元方法.分别选取CrouzeixRaviart(CR)有限元和分片常数元离散速度场和压力场.针对CR元,本文提出了一种超收敛点团重构方法(SCR),利用样本点处的函数(速度场)值最小二乘拟合一个线性函数,将这个函数梯度定义为重构点处的梯度值.另外,本文还利用SCR对压力场进行了函数值重构,即使用样本单元上的数值解最小二乘拟合一个线性函数,这个函
鲜莲子是一种有效的中医药材和滋补品,随着鲜莲子及其产品的需求量大幅提升,莲子栽种规模和莲子相关产品的销量也大量增长,这为莲子生产及加工企业带来了较大的机遇,但随之而来的也有较大的挑战。虽然国内目前已经研发成功了多种型号的半自动、全自动莲子去壳机,相对于传统的手工去壳法,在效率上有着大幅提升,但因为莲子外形及尺寸各异,在生产中会因施加机械力而导致莲子去壳失败或者损伤莲仁。针对上述问题,本文提出了一种
对于连接结构来说,螺栓连接的松动失效是最为普遍的失效方式之一。在工程实际中,螺栓松动失效相对于疲劳断裂往往发生时间更早,伴随着这个过程的是螺栓预紧力逐渐变小。在早期阶段,螺栓连接结构中螺栓和螺母出现细微滑动,对于整体结构体系工作性能的降低并不显著。然而,随着工作时间的增长,螺栓张紧力会进一步下降,由此而导致一系列问题,如密封性变差,甚至造成疲劳断裂。因此,对螺栓连接结构松动现象的内在原因进行分析,