论文部分内容阅读
内燃机曲轴一轴承系统是内燃机的关键部件,其摩擦学、动力学性能分析和强度刚度计算是内燃机设计必须面临的问题,直接影响到内燃机工作的可靠性和耐久性。然而,长期以来,由于曲轴一轴承系统特殊的结构形式和复杂的受力状况,理论研究难度较大,其摩擦学性能、动力学行为的分析和强度刚度计算是在各自独立的领域里分别进行的。实际上,内燃机在运转时,各种机械行为是同时发生互相影响的。因此,进行曲轴一轴承系统摩擦学、动力学、刚度和强度耦合研究、提高曲轴一轴承系统理论分析的准确性,具有重要的理论意义和现实的应用价值。多体动力学和有限元法的发展使得较精确地分析曲轴动力学响应问题成为可能。本文运用有限元法和多体动力学仿真相结合的方法,对CA4D32柴油机曲轴轴系进行动力学分析仿真,其主要研究内容为:
通过建立合理的柴油机曲轴轴系多体动力学模型,完成一个工作周期内的仿真,得到曲轴在实际工作周期内所表现出的动力响应特性,然后运用有限元分析软件对曲轴进行瞬态动力学分析。首先针对具体产品结构特点以及后续的功能分析特点来决定曲轴轴系模型的简化程度,建立了CA4D32柴油机轴系俩种有限元模型,根据下文多体动力学模型的需要建立了轴系缩减有限元模型,在此基础上建立了轴系多体动力学分析模型。
然后通过轴系的有限元模态分析与厂方实验数据结果的对比,论证了轴系有限元模型的合理性。接着通过EXCITE多体动力学仿真,进行了柴油机额定转速下的正常工况下包括曲柄销受力、轴系自由端扭转位移、曲轴位移量、转速波动等参数的多体动力学分析,得到曲轴在实际工作周期内所表现出的动力响应特性,进一步验证多体动力学模型的正确性。同时进行轴承载荷分析,得到最小油膜厚度、最大油膜压力、主轴承轴心轨迹等,对主轴承的润滑状况进行分析,得到3#主轴承的润滑状况最为恶劣,需要优化处理。
最后对曲轴进行应力应变分析,并与传统有限元法比较。计算表明,曲轴的最大应力在其许用应力范围内,且变形小,曲轴的刚度足够。不同时段最大应力均发生在主轴颈和曲柄臂连接处,因此主轴颈和曲柄臂连接处是结构设计和优化的重点。多体动力学结合有限元法的使用为曲轴的精确仿真,创新设计,改型设计及优化设计提供了强有力的技术保证。
通过建立合理的柴油机曲轴轴系多体动力学模型,完成一个工作周期内的仿真,得到曲轴在实际工作周期内所表现出的动力响应特性,然后运用有限元分析软件对曲轴进行瞬态动力学分析。首先针对具体产品结构特点以及后续的功能分析特点来决定曲轴轴系模型的简化程度,建立了CA4D32柴油机轴系俩种有限元模型,根据下文多体动力学模型的需要建立了轴系缩减有限元模型,在此基础上建立了轴系多体动力学分析模型。
然后通过轴系的有限元模态分析与厂方实验数据结果的对比,论证了轴系有限元模型的合理性。接着通过EXCITE多体动力学仿真,进行了柴油机额定转速下的正常工况下包括曲柄销受力、轴系自由端扭转位移、曲轴位移量、转速波动等参数的多体动力学分析,得到曲轴在实际工作周期内所表现出的动力响应特性,进一步验证多体动力学模型的正确性。同时进行轴承载荷分析,得到最小油膜厚度、最大油膜压力、主轴承轴心轨迹等,对主轴承的润滑状况进行分析,得到3#主轴承的润滑状况最为恶劣,需要优化处理。
最后对曲轴进行应力应变分析,并与传统有限元法比较。计算表明,曲轴的最大应力在其许用应力范围内,且变形小,曲轴的刚度足够。不同时段最大应力均发生在主轴颈和曲柄臂连接处,因此主轴颈和曲柄臂连接处是结构设计和优化的重点。多体动力学结合有限元法的使用为曲轴的精确仿真,创新设计,改型设计及优化设计提供了强有力的技术保证。