论文部分内容阅读
逻辑学是一门研究思维形式及思维规律的科学,它是人类进行判断,推理的基础,在人工智能的发展过程中发挥了巨大的作用。概率逻辑作为逻辑学的一个分支,它以概率论作为其理论基础,在人工智能的不确定推理方面有着重要的应用价值。但是,传统概率逻辑算子存在一定缺陷,盲目使用可能会使推理出现偏差。为扩大概率逻辑的有效使用范围,人们提出了不少的改进方案。其中,改变概率逻辑算子的刚性限制,实现概率逻辑运算关系的连续可变是一种较新的解决方案。泛逻辑的出现,为解决了不确定推理中各种算子的连续可变提供了一条有效途径。其主要特征是在连续域[0,1]上定义的各种逻辑运算模型都可随控制形参h∈[0,1]连续变化。这一特性对不确定性推理更加有利,比现有的不确定性推理方法前进了一步。理论研究表明泛逻辑中泛非、泛与/或运算的连续可控性在数学上是完全可以实现的,并可以用多种数学形式如指数、多项式和三角函数等形式来实现,本文介绍的泛与/或运算的几个模型,通过仿真实验比较可以得出模型一就是一个比较理想的模型。从泛逻辑学的角度看,概率逻辑是泛逻辑在形参h∈[0.5,1]时的一个特例。利用泛逻辑学的方法,对概率逻辑关系进行柔性化是本文研究的重点。本文的主要工作包括:通过对泛逻辑学的理论学习研究,从泛逻辑学的角度分析了概率逻辑的缺陷以及研究其关系柔性化的思想方法,着重对泛与/或运算模型进行了仿真实验;以零级N/T/S范数完整簇和Frank相容算子簇构造概率逻辑算子,并进行仿真实验,以弥补条件概率运算中的缺陷;最后阐述了由Frank相容算子簇构造概率与/或算子的主要性质。