【摘 要】
:
储层岩心等多孔介质材料富含大量的油、气资源,其结构特性分析及内部流体运移规律研究对于储层的评价、开发至关重要。磁共振技术以其无损检测、可原位测量等优势广泛应用于岩心等材料的应用研究中。NMR/MRI方法以材料中流体内的核自旋为探针,可有效地获取材料的结构特性、流体含量及分布信息,从而为储层评价、了解采油过程、发展提高采油率的新方法提供了参考。由于固液两相磁化率差异引起的磁场梯度,高场下微孔内NMR
【机 构】
:
中国科学院大学(中国科学院武汉物理与数学研究所)
【出 处】
:
中国科学院大学(中国科学院精密测量科学与技术创新研究院)
论文部分内容阅读
储层岩心等多孔介质材料富含大量的油、气资源,其结构特性分析及内部流体运移规律研究对于储层的评价、开发至关重要。磁共振技术以其无损检测、可原位测量等优势广泛应用于岩心等材料的应用研究中。NMR/MRI方法以材料中流体内的核自旋为探针,可有效地获取材料的结构特性、流体含量及分布信息,从而为储层评价、了解采油过程、发展提高采油率的新方法提供了参考。由于固液两相磁化率差异引起的磁场梯度,高场下微孔内NMR信号快速衰减,甚至不可见,从而使岩心等材料的研究多在低场下开展。然而,较低的NMR信噪比极大地增加了样品的测试时间,尤其是2D NMR与MRI测试时间可长达数个小时,极大地制约着测试效率与准确度的提高,使得低场下高效、准确、实时的测量需求与较低NMR信噪比之间的矛盾日益突出。为改善低场下NMR信噪比低、测试时间长对应用研究的限制,需要发展新的方法或采用新的灵敏度提高技术。动态核极化技术可以有效地提高核的极化度,为改善低场下应用研究中的诸多不利因素提供了解决方案。本文结合低场下多孔材料的研究需求,开展了 0.06T DNP谱仪关键部件的研制及其在多孔材料中的应用研究。首先阐述了低场下多孔材料的研究现状,同时讨论了 DNP在多孔材料应用中的限制,并提出了低场DNP谱仪的研制需求。然后对NMR及DNP原理进行了简单介绍,并对谱仪关键部件进行了深入研究,在此基础上实现了谱仪系统的集成与测试。最后,针对DNP在材料结构表征、油水信号分离与表征、油水的可视化分布等应用进行了研究与讨论。具体地,本文的研究工作及创新点如下:1)在对谱仪系统介绍的基础上,结合DNP功能及应用需求,设计并研制了谱仪系统的微波发射机及磁控系统,并对谱仪系统进行集成与测试。在研制的谱仪系统上测得了1H高于-180的极化增强,且样品发热量不高于3℃,有利于在低场条件下开展多孔材料的应用研究工作。2)DNP在多孔材料结构特性表征中的应用研究。采用标准玻璃珠构建孔径分布在9.4~72.4μm的多孔材料模型,并对两相的DNP增强进行测试对比,分析两相增强在材料中的变化规律,研究表明润湿相流体受材料表面特性的影响,DNP增强随材料孔径的减小而减小,非润湿相的DNP增强则近似为均一增强,由此提出了一种采用DNP增强研究材料润湿性及孔径分布的方法,从而可以将标准样品的测试结果作为标尺,为快速评估材料结构参数如孔径、比表面积、渗透率等提供了依据。3)DNP在油水识别与表征中的应用研究。针对油水两相DNP增强差异较大不利于两相分离,且选择性自由基种类较少、成本高昂的问题,提出了一种采用非选择性自由基与弛豫试剂相结合的方式选择性增强并分离油相或水相信号的方法,自由基用于增强所需流体相信号,弛豫试剂用于选择性抑制另一流体相的NOE效应。在油水选择性增强的基础上,采用延时采样的数据处理方式获得了油相的真实增强,依据DNP增强与黏度之间的负相关变化关系,提出了一种采用DNP增强进行油质黏度筛选、分类的方法,将选择性增强与延时采样相结合的方式,可以在获得流体相增强的同时,无需考虑两相含量差异,且保留样品的原始信息,从而有利于后续定量分析研究。4)DNP在油水可视化分布中的应用研究。针对低场下NMR信噪比低、MRI实验时间长、两相分布不易区分等问题,在理论上分析了 DNP在提高MRI图像对比度及测试效率方面的可行性,并采用油水样品进行了验证测试。在此基础上提出了一种利用DNP-MRI增强单一流体相的方式进行两相分布区分与识别的方法,并在水模及玻璃珠构建的材料模型中获得油相的MRI增强。采用DNP-MRI进行两相区分的方式,不受样品弛豫特性限制,可广泛应用于储层岩石等复杂结构材料中的研究,并为渗流、驱替等动态过程的研究提供实时可视化分布信息,有助于为研究采油过程、制定开采方案提供参考。
其他文献
超短脉冲光源的产生及电子运动的探测与操控是超快光学研究领域的前沿课题。研究人员分别对不同物态的物质与强场超快激光相互作用进行了研究。在等离子体高次谐波、气体高次谐波之后,非线性固体高次谐波也在2011年首次实验实现,并引起了同行的广泛关注。在固体高次谐波的理论研究上,已有的研究方法有很大的局限性。比如含时密度泛函理论(TDDFT)的计算量在千核量级,效率低下。求解半导体布洛赫方程(SBE)的方法计
本文主要研究了高维非齐次标量守恒律Cauchy问题的全局光滑解以及Rie-mann问题的高维非自相似激波和稀疏波解、n维非齐次Burgers方程的具有两片初值的Riemann问题的n维非自相似激波和稀疏波解的相互作用、具有三片初值的二维非齐次Burgers方程的Riemann解中波的相互作用。第3章研究了n维非齐次标量守恒律Cauchy问题的全局光滑解,它的非齐次项是关于u和t的函数,初值是有界或
随着处在中红外波段的超短超强激光脉冲技术的发展,固体高次谐波逐渐成为国内外研究的热点。中红外激光的波长范围在2-5 μm,相较于半导体的带隙,中红外波段的激光的长波长,高强度,使得激光作用于半导体时,电离过程处于隧穿机制下。固体高次谐波的研究有着十分重要的意义:其一,因为固体高次谐波动力学时间尺度是在亚飞秒或者阿秒的量级,所以具有超短的时间分辨。固体谐波含有固体内部的超快电子动力学和晶格动力学的物
当强飞秒激光脉冲与透明介质(气体、液体和固体)相互作用时,由于各种线性和非线性光学效应的共同作用,激光脉冲在传播过程中会形成一条明亮的等离子体通道。与此同时,激光脉冲在时间和空间分布上达到相对稳定,这种现象被称之为飞秒激光成丝。由于飞秒激光成丝在众多领域,如大气远程探测、激光引雷、激光加工、超短脉冲产生、超快光谱技术等,都有着重要应用价值,近三十年来飞秒激光成丝一直是热门的前沿研究课题。然而,飞秒
实现对原子和离子的长期稳定囚禁,使其与外界环境隔离开来对于精密测量物理的研究和发展具有重要意义。近几十年来,分别通过使用射频场和光场,人们已经实现了对离子和原子的长期稳定囚禁。随着离子阱和激光冷却技术的发展,基于射频场囚禁单个离子的离子光频标也得以迅速发展。然而射频场不可避免的会引入微运动,这对于离子光频标的频率测量会造成很大的误差,因此人们希望寻找一个解决此问题的普适方法。2010年,德国的T.
超冷原子气体具有体系纯净、相互作用可控、自由度丰富等特点,是研究物质量子特性的理想体系。在超冷原子物理领域中,对超冷费米气体的研究也随着实验技术的不断进步而得到蓬勃发展。特别是近几年里相继有一系列新奇宏观量子现象在实验中得到观测并被研究,其中包括BEC-BCS间的渡越、具有标度不变性的膨胀行为、物质波孤子的形成等等。在不同的体系中这些现象都有所存在,有一部分还探究到了凝聚态物理、粒子物理和原子分子
氦原子是最简单的三体原子体系,其结构属性的高精度理论计算和跃迁光谱的精密测量在检验量子力学(QED)理论、确定基本物理常数、以及探索与核模型无关的核结构性质等方面起着重要的作用。例如,氦原子23P态的精细结构劈裂可以检验QED理论,而氦原子亚稳态413 nm幻零波长的高精度实验测量和理论计算相结合为检验QED理论提供了新途径。目前该幻零波长的理论和实验之间存在19 ppm的差异,这一差异的存在主要
本论文主要研究量子多体系统中的三类L2(质量)临界约束极小问题,具体包括极小元的存在性与非存在性、质量参数趋于临界值时极小元的渐近收敛行为等分析性质.全文共分四章:在第一章中,我们将概述三类质量临界约束极小问题的具体背景及其国内外的研究现状,引入一些相关的预备知识,并简单地介绍全文的主要结果.在第二章中,我们分析下述带陡峭位势的质量临界约束极小问题:eλ(N):= inf{u∈H1(Rd),‖u‖
Over the last few decades,quantum computing(QC)and quantum information processing(QIP)have exploded into a major field of physics,in terms of theory and experimentation extending towards a universal q
强激光场(~1013 W/cm2及以上)与原子分子相互作用时会产生一系列非微扰效应,例如高次谐波、阈上电离、非次序性双电离等。这些新现象进一步推动了阿秒物理学的发展和应用。例如利用高次谐波合成超短孤立阿秒脉冲,利用阈上电离谱特征探测电离解离动力学过程,以及通过非次序性双电离研究电子间相互关联作用等。强激光场与分子相互作用时,由于核在电子电离、复合及散射等多个过程中的重要影响,在很多情况下也需要考虑