论文部分内容阅读
实际运行的非线性系统中,存在着各种形式的约束条件,如物理停止、饱和以及性能和安全规范等。在系统运行过程中违背了这些约束条件,系统的性能可能变差,甚至可能导致系统不稳定而无法正常运行。系统设计时若忽略这些条件,就需要大量的人为干涉且并不能保证系统成功地正常运行。除了约束条件,由于测量噪声、模型误差、模型简化、扰动等因素的影响,非线性系统中亦存在各种不确定性,这些来自于系统内部或外部的不确定性对控制系统稳定性影响很大,这些不确定性统称为未建模动态。受理论创新和实际需要的驱动,近年来对具有约束和未建模动态的系统控制问题受到越来越多的关注,成为控制理论界一直关注的热点与难点问题之一。本文对具有约束和未建模动态的非线性系统,通过引入辅助动态信号或通过Lyapunov函数法来处理系统中的未建模动态,利用积分障碍Lyapunov函数(iBLF)处理系统状态约束,提出控制器设计方案。引入非线性可逆映射处理全状态约束,将具有约束的系统转换成等价的无约束系统,系统中的未知函数由神经网络逼近,结合后推设计法和动态面方法提出几种控制器设计方案。主要工作和创新点如下:1.研究一类具有全状态约束和动态不确定性的纯反馈非线性系统控制问题。通过引入可逆非对称非线性映射,提出了处理状态约束问题的新方法,消除了目前现有文献中利用障碍Lyapunov函数设计控制器所导致的稳定性分析需要虚拟控制上界已知的不合理假设条件。基于非线性映射将具有全状态约束的纯反馈系统转化为等价的无约束纯反馈非线性系统。对变换后的系统可以采用传统的控制设计方法,同时防止违背约束条件。引入辅助动态信号处理未建模动态:高频增益符号未知问题则利用Nussbaum函数处理;基于改进的动态面方法提出了自适应控制方案。设计方案弱化了对虚拟控制信号的要求,不需要知道虚拟控制信号的上界和下界。两个数值仿真结果阐明了所提设计方案的有效性。2.研究一类具有全状态约束、时变时滞、分布时滞和动态不确定性的非线性系统控制问题。通过构造Lyapunov-Krasovskii泛函补偿系统中出现的时滞项,将处理状态约束的可逆非线性映射方法推广用于具有时滞、分布时滞及未建模动态的全状态约束非线性系统,基于后推设计,提出一种自适应控制新策略。引入辅助动态信号处理未建模动态,径向基函数神经网络用于逼近未知非线性函数。通过估计神经网络权值向量范数,减少了设计过程中的自适应参数,降低了设计的复杂性和计算量,提高了设计效率。仿真结果验证了所提出方法的有效性。3.针对一类具有输入和状态未建模动态的随机非线性纯反馈系统,利用非线性变换取代中值定理在纯反馈系统控制器设计中的应用,基于改进的动态面方法,首次提出自适应神经控制新策略,同时建立了保证随机闭环系统半全局一致终结有界的充分条件。Lyapunov函数描述法处理未建模动态,引入正则信号消除输入未建模动态对系统的不利影响。动态面设计法通过引入一阶滤波器,避免了后推设计过程中因对虚拟控制信号反复求导导致的计算量“爆炸式”增加问题,降低了设计的复杂性。理论分析证明了闭环系统所有信号依概率有界,仿真研究进一步验证了所提控制策略的有效性。4.针对一类具有全状态约束和动态不确定性的随机非线性系统,给出了随机状态变量在概率意义下约束的定义并应用于稳定性分析;通过使用动态面控制方法、可逆非线性映射、伊藤微分公式和Chebyshev不等式提出了自适应神经网络控制方案,有效地解决了具有未建模动态的全状态受限随机系统自适应控制问题,所提控制策略能够保证闭环系统中所有信号依概率有界。数值算例和倒立摆系统仿真研究阐明了控制策略的有效性。5.研究一类具有全状态约束和未建模动态的多输入多输出(Multiple-Input-Multiple-Output,MIMO)随机非线性系统的自适应跟踪控制问题。将概率意义下状态约束的定义推广至具有全状态约束的块结构MIMO随机系统,基于自适应神经网络动态面方法提出新的随机自适应控制方案,且全状态满足概率意义下的随机约束条件。此方案利用动态面设计方法稳定性分析中引入的紧集弱化了对控制增益矩阵非奇异性要求。仿真研究阐明了控制方案的有效性。6.研究一类具有量化输入和全状态约束及包含多种动态不确定性的块结构MIMO随机非线性系统控制问题。利用非线性可逆映射和动态面控制技术,构造出能够保证系统稳定且全状态满足概率意义下随机约束条件的自适应控制新策略。控制信号经过滞回量化器生成系统的量化输入信号,量化输入信号分解成连续和不连续部分;未知非线性函数及理论分析中产生的未知函数一并采用RBF神经网络来逼近,这种方法减少了在线调节参数数量;控制器设计中,为每一块设计 Lyapunov函数,简化了设计过程。仿真研究阐明了控制方案的有效性。