论文部分内容阅读
随着航空、航天技术的迅猛发展,对惯性导航与制导系统的性能及精度的要求不断提高,相应地要求其测试设备——转台的性能及精度也不断提高。角振动台与伺服转台是转台中常见的两类测试设备。众所周知,轴系摩擦力矩是影响高精度机械轴承转台控制系统性能及精度的最主要因素,而摩擦力矩的减小又受到工艺水平及实验经费等条件的限制。这就给转台的整体研制水平提出了新的课题。因此,从控制的角度出发设计能够消除或抑制摩擦影响的控制律,通过适当的控制算法补偿摩擦力矩从而达到高精度控制,对研制结构简单且性能优良的高精度机械轴承转台具有重要的理论意义和实际应用价值。本文以机械轴承角振动台控制系统及伺服转台控制系统为研究背景,对轴系摩擦力矩给相应控制系统所带来的不良影响进行了深入的研究。通过将重复控制算法引入到系统的摩擦补偿方案中,较好地提高了控制系统的性能及精度。同时对所提出的控制方案分别进行了计算机仿真,验证了相应控制方案的正确性。在对角振动台控制系统中的摩擦补偿问题进行深入研究的基础上,建立了考虑摩擦力矩的控制系统线性传递函数框图,进而建立了简化的控制系统动态方程。针对系统速度转向时产生的波形畸变现象,并为进一步减小角振动台控制系统的波形失真度,将重复控制算法引入到系统的PID控制方案中,进而提出相应的控制方案,为利用重复控制算法解决摩擦补偿问题提供了指导方向。针对角振动台控制系统中动态摩擦力矩的影响,为了进一步减小系统的波形失真度,将重复控制算法分别引入到两种情况下系统的摩擦补偿方法中,进而提出了一种重复自适应摩擦补偿控制方案。第一种情况是考虑动态摩擦力矩参数随温度等发生一致性变化并假设系统参数已知;第二种情况是考虑动态摩擦力矩参数随温度等发生非一致性变化并假设系统参数已知。两种情况下,均通过基于Lyapunov的方法证明了摩擦参数估计的收敛性和闭环系统的渐近稳定性。考虑到摩擦模型的不确定性,针对角振动台控制系统中带有不确定性项摩擦力矩的影响,同时为进一步减小系统的波形失真度,基于分解控制的思想并分别考虑可参数化摩擦模型不确定性项未知但是为常数和可参数化摩擦模型不确定性项为变量的情况,进而提出了一种改进的摩擦补偿控制方案。两种情况下,均通过基于Lyapunov的方法证明了闭环系统的渐进稳定性。针对伺服转台控制系统中摩擦力矩引起的低速爬行问题,理论分析了摩擦力矩给系统带来的不良影响,同时给出了相应的改善办法。提出了重复自适应摩擦补偿控制方法和基于分解控制的改进摩擦补偿控制方法对伺服转台控制系统分别进行分析研究。