基于视觉的自动驾驶汽车横纵向定位研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:jiguoqiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,自动驾驶技术的蓬勃发展极大地促进了汽车科技的智能化变革,但高昂的传感器硬件成本严重阻碍了自动驾驶汽车的落地应用。因此如何使用低成本传感器在特定的场景下实现自动驾驶成为了学术界与产业界非常关注的问题。自动驾驶汽车落地应用的基础是精确的感知与定位,因此基于视觉的感知与定位研究对加速自动驾驶汽车低成本落地应用具有重要意义。本文聚焦结构化道路环境,提出一种基于视觉的低成本方案来实现自动驾驶汽车的横纵向定位,主要研究内容如下:1)搭建基于视觉的自动驾驶汽车横纵向定位研究软硬件基础平台,其中,硬件基础平台由一辆自动驾驶试验车及其配备的本研究相关传感器组成;软件基础平台由各类传感器的数据读取、存储、收发以及标定等模块组成。基于软件基础平台,本文设计了相关传感器的实验数据采集方式,并开展了摄像机标定相关工作,为后续研究提供了数据采集与实验验证的平台。2)围绕基于车道特征提取的横向定位开展相关研究。首先针对车道特征提取易受环境噪声干扰的问题,本文提出一种基于梯度特征与色彩特征融合的方法来完成车道特征提取。其次,针对经典视觉定位模型中角度参数测量精度难以保证的问题,本文提出一种改进的横向定位模型,仅需测量标定两个距离量,优化了定位模型参数标定过程。最后基于改进的横向定位模型提出一种融合车道特征信息的横向定位方法。实验结果表明,横向定位静态实验的绝对误差平均值为0.048米,相对误差平均值为2.52%,横向定位动态实验的绝对误差平均值为0.051米,相对误差平均值为2.67%,基本满足了自动驾驶应用中横向定位精度的需求。3)围绕基于前方车辆目标检测的纵向定位开展相关研究。本文基于Dark Net搭建了深度车辆检测网络,通过所构建的数据集进行车辆检测网络的训练,获得具有车辆分类能力的车辆检测模型。针对纵向定位模型中车辆宽度难以准确估计的问题,本文提出两种前车宽度估计方法:一是基于车道线检测信息对车道内的前车宽度进行估计;二是基于车辆检测模型获取前车类别并将不同类别车辆的平均宽度作为前车先验宽度。基于两种前车宽度估计方法,本文提出了一种前方车辆宽度信息融合算法,并使用融合后的前车宽度完成基于视觉的纵向定位。最后实验结果表明,纵向定位的相对误差平均值在本车前方50米范围内不超过3%、60米范围内不超过5%,本文提出的方法在一定范围内能够有效的实现自动驾驶汽车的纵向定位。
其他文献
云计算由于其强大的计算和存储能力得到了广泛关注,但是远距离传输带来的高延迟对用户体验产生了不利影响,本文通过引入移动边缘计算技术,利用边缘节点天然的地理位置优势,将一个区域内的闲置计算资源整合成一个分布式边缘计算平台,使其提供快速,高效的即时响应。为了解决分布环境中的用户身份安全问题,本文引入区块链技术实现用户之间的可信交易。面对共识过程中产生的“冷启动”和“长期回报”,本文引入银行借贷机制,解决
知识图谱是由实体和关系组成的有向图,图中的节点表示现实世界中的各种事物实体,图中的边表示这些事物实体之间的相互关系。但是知识图谱通常都是不完全的,会有大量的关系缺失,通过人工的方式补全这些缺失的关系,需要消耗大量的人力和时间。因此,知识表示学习被提出来,通过将实体嵌入到连续的低维向量空间中,进而实现知识图谱的自动补全。现在已有很多知识嵌入方法,一般将其分为两大类,第一类是以Trans E为开端的基
近几年,我国公共建筑领域的发展趋势是公共建筑的档次越来越高,功能越来越复杂,高能耗建筑占新建建筑的比例越来越高。作为建筑能耗占比最大的一部分,公共建筑暖通空调系统在实际运行过程中缺乏有效的调节手段。目前对于公共建筑节能诊断的研究主要从两个角度考虑,分别基于专家知识和基于数据挖掘来进行,但多数研究工作仅从一个角度考虑,将节能诊断工作进行非常细致地推进,但这样往往会造成测试工作量过大或诊断方法过于复杂
城市交通系统作为城市系统的重要组成部分,在城市风险研究中不可或缺。城市风险的防范与监测需要将城市交通出行特征纳入考量范围。对于交通出行轨迹数据进行挖掘,可以发现城市居民的移动规律与城市系统空间的交互特征,进而刻画出整个城市的交通出行画像。本文以描绘城市交通出行画像为出发点,研究如何高效地挖掘出行轨迹数据,探索这些行驶轨迹形成的原因,开展了以下工作:首先,提出了基于频繁模式挖掘的城市交通出行画像方法
古代壁画是是中国古典艺术的宝库,是中国历史和文化的见证,是我国宝贵的历史文化遗产,其历史研究价值更是无法估量。然而在外界环境及人为内在因素的影响下,大部分壁画如敦煌莫高窟、西千佛洞等壁画群均出现不同程度的裂缝、脱落、酥碱、霉变等多种形式的病害。为了长久地保护这些珍宝,修复壁画中的破损部分精准还原壁画内容,是一项亟需研究且具有重大意义的内容。与传统手工技术相比,数字化技术的出现给古建筑壁画修复带来了
深度估计一直是机器视觉领域中重要的研究课题。早期的深度估计是基于场景中的几何约束信息从而得到深度信息。后来出现了单目深度估计算法。近年来随着人工智能技术的高速发展,深度学习方向炙手可热,基于深度学习的深度估计算法发展迅猛使得深度估计有了更广泛的应用,比如:实地测距,机器人导航,自动驾驶等等。但现在大部分深度估计算法主要用于室外场景,而室内场景下的深度估计,由于该类场景没有显著的全局或局部特征,场景
为了解决传统互联网暴露出的IP地址不足、安全性差等问题,一种以内容为中心的新型网络架构命名数据网应运而生。命名数据网通过内置内容存储池,提供了网内缓存功能,实现了数据的高效分发与共享。然而,频繁的数据检索和海量的数据存储给内容存储池的设计与部署带来了巨大挑战。为此,本论文针对命名数据网转发平面内容存储池的存储结构及其数据检索算法展开研究,设计了高性能、可部署的内容存储池。本论文的主要工作和创新点总
信息时代,大数据中含有许多有用的知识,值得人们深入探索、挖掘、研究、分析.随着信息爆炸,数据量暴增,知识图谱在垂直搜索、NLP、社会网络、语义WEB、智能问答、生物信息学医学等领域有着越来越重要且广泛的应用.知识图谱推理算法是根据知识图谱中现存的知识,通过计算推理,得到新的知识的过程,是当前知识图谱的热门课题.对于大量的知识图谱推理问题,现有的张量分解知识图谱算法仅考虑数据的单一特征,对知识图谱的
视频显著性对象检测,旨在找出视频每一帧中吸引人视觉注意的对象。由于其广泛的应用场景,近几年吸引了越来越多的研究兴趣。然而,在当前的视频显著性领域,对“视频显著性对象”的定义一直存在一些争议。在大多数先前的工作中,都使用的是视频对象分割或运动追踪数据集作为标准,直接将单一的前景对象或运动中的对象看作是显著对象,这并不符合我们人眼视觉机制的判断规则。即便后来出现了专门针对于显著性领域的数据集,但它的标
工业物联网通过各类传感器采集工业大数据,并运用大数据智能分析技术优化生产流程。然而,由于具备高潜在价值、强安全需求属性,工业大数据一直存在孤岛问题,难以实现跨领域安全共享。作为新兴技术之一,区块链具备可溯源,防篡改等特性,为工业大数据的安全高效共享提供了良好的前景。但现有对于区块链数据共享的研究,只关注数据共享各方之间数据交换过程的安全性,很少考虑数据共享的效率。因此,如何在使用区块链技术保证数据