粗粒度可重构架构的模拟器设计与能效优化

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:cmcbst
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着新兴应用的出现,专用集成电路、通用处理器和现场可编程门阵列等计算架构逐渐难以满足人们的需求,粗粒度可重构架构以其灵活的可配置性和显著的能效比优势,近年来不断得到关注。作为粗粒度可重构架构的特点之一,广泛的可配置性使得架构具有广阔的设计空间,可以灵活地满足不同应用的需求。但同时也提高了其设计难度,架构设计人员常常需要在设计早期对设计的不同结构进行建模仿真,因此拥有便捷的建模和仿真工具显得尤为重要。粗粒度可重构架构模拟器需要满足高层次抽象建模,架构参数动态可配置,方便系统级集成等多方面需求。针对这些需求,本文提出了基于Gem5的粗粒度可重构架构系统级模拟器设计方案,该方案具有高度模块化、离散事件驱动和易于全系统仿真的优势。本文以一个具体的异构粗粒度可重构架构的模拟器实现为例,讲述了基于Gem5的建模设计过程以及系统级集成方案,旨在为粗粒度可重构架构建模工作提供一种通用、快速、易于系统集成的设计思路。结合该模拟器性能分析结果,本文对粗粒度可重构架构控制通路的设计方案进行了评估,发现了其指令配置代价过高的问题。为此,本文针对性地提出了基于相似性的指令压缩方案。该方案利用实践中发现的粗粒度可重构架构指令间具有的明显的相似性,实现了对指令的压缩。该方案能够在较小的性能损失前提下,明显地降低粗粒度可重构架构的指令配置代价,从而最终实现提高架构能效比的目的。实验结果表明,相比于两种基准架构本文的方案分别得到了36%和181%的面积效率比提升,33%和118%功耗效率比提升。
其他文献
随着第五代移动通信技术的逐渐成熟及毫米波通信技术的不断发展,无线通信系统小型化的需求愈来愈高,系统向着高度集成化发展的趋势愈来愈快。目前,作为推动系统集成度不断提高的关键方法,各种先进的封装技术不断涌现、电子微组装技术持续进步,通信系统向着高集成度、高频率、宽频带和高功率方向快速发展,已得到了学术界及工业界的广泛关注。与此同时,随着通信系统不断朝着大功率和高频率等方向演进,也带来一些待研究和解决的
随着半导体器工艺节点的不断刷新新低,互连技术对芯片最终的质量影响越来越大,主要体现在可靠性、延迟、能耗等性能。自130nm技术节点开始,铜布线因其优异的RC延时、抗电迁移等性能而逐渐取代铝布线,其中铜电镀是其最主要的关键工艺之一。在40nm技术节点,铜通孔最小直径已缩小至至90nm左右,电镀铜里更易出现埋层空洞缺陷,而这种缺陷在电镀后或化学机械抛光后很难被及时发现,而是到最终端进行晶圆可接受性测试
在汽车电子市场份额逐渐增长的背景下,集成电路封装的要求变得越来越高。目前,半导体封装使用的工艺能力在不断提升,抗压能力越来越强,但芯片成本缺日渐降低。在传统消费电子封装中,因为市场金价的波动起伏和本身材料特性的限制,铜线的低成本和本身突出的导电性、导热性以及稳定性等特点使其在半导体市场中慢慢取代金线成为主导地位。但是在汽车电子行业,因为汽车电子委员会针对汽车电子Grade等级划分和高品质要求,市场
随着技术的进步以及人们对于生活便捷性的需求,电子元器件开始向小型化以及多功能化发展,因此作为电子元器件核心组成部分的集成电路器件在设计和制造上开始追求更小的栅极线宽,更多的金属层数以及更低的电阻电容延时。栅极线宽的变小要求集成电路中的介电层工艺具有在更小区间内的间隙填充能力,而多功能性则促使着相关研究单位尝试通过调整集成电路结构中薄膜氧化层的成分来缩短相关器件的电阻电容延时。在此背景下,采用高密度
动态电压频率调节(Dynamic Voltage and Frequency Scaling,DVFS)是一种在满足性能需求的前提下,通过动态调节电压和时钟频率来降低功耗的技术。当工作在更宽的电压范围下,DVFS技术会使芯片获得更高的能效。然而,在宽电压调节范围下,电路在不同工作点的设计裕量及工作点间切换的代价会更高。论文面向宽工作电压范围,设计了结合片内电源轨切换和片外DC-DC调压的混合DVF
光子模数转换技术(PADC,photonic analog-to-digital converters)是克服传统电子模数转换技术(ADC,analog-to-digital converters)遭遇性能瓶颈的重要技术手段。PADC技术将光子技术的高速宽带与电子技术的成熟灵活紧密相结合,为下一代雷达和通信系统提供理想的信号接收处理解决方案。前期的研究主要聚焦在提升PADC系统的基本性能,比如有效
光刻是集成电路制造工艺中一道关键的工序,它是利用光化学反应机理,把制造在掩膜版上的图形转移到硅衬底上的过程。光刻决定了芯片的最小工艺尺寸,约占芯片制造时间的45%。光刻的工艺质量直接影响着器件的良率,而缺陷是造成良率降低的最重要和最直接的原因。在处于55 nm量产阶段的工厂中,约80%的缺陷是由于设备的原因造成的。分析研究光刻工艺设备所造成缺陷的实例并归纳总结,有助于量产良率的提升,并且为实现更高
本课题主要对金属层间介质薄膜的片内厚度均匀性这一重要的集成电路制造工艺指标展开研究,从金属层间介质薄膜的化学气相淀积(Chemical Vapor Deposition,CVD)和化学机械抛光(Chemical Mechanical Polishing,CMP)以及工艺整合三个方面分析影响金属层间介质薄膜厚度均匀性的关键因素和提出改善方法。本课题首先研究等离子增强化学气相淀积(Plasma Enh
近年来,随着异构多核片上系统(Heterogeneous Multi-Processor SoC)集成度越来越高,大量处理器核及功能单元之间的通信需求对片上总线系统提出了更高的要求。当前片上总线主要采用并行传输方式,并行总线通过增加总线位宽、提高总线时钟频率来提高带宽。然而随着时钟频率与位宽的提高,信号偏移和信号干扰问题愈发严重,并行信号之间的时序同步愈发困难,布线难度大大增加,阻碍了并行总线传输
三维片上网络(Three-Dimensional Network-on-Chip,3D NoC)以其高通信带宽、高封装密度、低功耗等优势,已经成为NoC领域的主要研究方向,然而三维集成电路的散热特性限制了高性能3D NoC在通信速率和功耗性能上的提升,片上高速低功耗互连技术为解决速度和功耗瓶颈提供了可行性方案。本文研究3D NoC中高速低功耗互连技术和电路设计,根据工艺缩小演进中,时域信号比电压域