【摘 要】
:
生物质化学链气化(BCLG)是一种用于生产富H2合成气有前景的生物质气化技术。生物质化学链气化技术通过可回收介质将化学反应分解为不同时间或空间的一系列反应,在此过程中,氧载体(OC)在燃料反应器中为燃料提供晶格氧,促进燃料气化产生合成气;还原后的氧载体被转移到空气反应器中,被空气氧化再生至初始状态后送入燃料反应器进行下一个生物质化学链气化循环。为了实现生物质清洁高效利用的同时处理有机废液,本文提出
【基金项目】
:
国能生物质发电集团项目(项目号5278991900MF); 国家自然科学基金(项目号51776071,51776070);
论文部分内容阅读
生物质化学链气化(BCLG)是一种用于生产富H2合成气有前景的生物质气化技术。生物质化学链气化技术通过可回收介质将化学反应分解为不同时间或空间的一系列反应,在此过程中,氧载体(OC)在燃料反应器中为燃料提供晶格氧,促进燃料气化产生合成气;还原后的氧载体被转移到空气反应器中,被空气氧化再生至初始状态后送入燃料反应器进行下一个生物质化学链气化循环。为了实现生物质清洁高效利用的同时处理有机废液,本文提出了 CaO协同有机废液驱动生物质化学链气化的工艺,这不仅可以实现有机废液中化学品的资源化利用,也可为生物质化学链气化过程提供充足的气化剂,同时CaO能捕获产生的CO2并促进H2的产生。在过氧系数为0.2、CaO与燃料碳的比为1.5和反应温度为600℃工况下,由10mL体积分数为6%的乙醇废液驱动0.5g玉米秸秆气化的产氢量达到1.5L。为了进一步降低合成气中的CH4含量,来减少分离CH4所消耗的能量,本文在生物质化学链气化过程中的二级反应器中引入V2O3来促进合成气中CH4重整产生H2和CO。在V2O3与玉米秸秆的质量比为2.16和反应温度为700℃工况下,CH4转化率可达44.9%。并进行了动力学、热力学分析以及对氧载体的表征分析,证实了 CaO/V2O3协同有机废液驱动生物质化学链气化过程的可能性和高效性。为了充分利用生物质中的资源,生物质化学链气化过程分离出的CO2一部分可用于V2O3载氧体的氧化再生,另一部分可用于电化学还原CO2制C2H4。基于密度泛函理论(DFT),研究了 CO2在Cu2O(111)表面还原合成C2H4的反应机理,比较了不同合成路径下的能量和结构变化。结果表明,当*CO覆盖率为0.11-0.25时,*CO在Cu2O(111)表面吸附最为稳定。高*CO覆盖率可以降低*CH2二聚化能垒,促进C-C耦合的进行,从而提高对C2H4的选择率。*CO覆盖率会影响反应进行的路径,在高*CO覆盖率下,C2H4倾向由*COH中间体合成,其中*CO加氢过程为速控步:在低*CO覆盖率下,C2H4倾向由*CHO中间体合成,其中C-C耦合过程为速控步。该工艺在处理有机废液同时为生物质化学链气化过程提供充足的气化剂,促进了生物质化学链气化反应的进行,实现了对生物质清洁高效利用。另外,计算结果为设计对C2H4高选择性的铜基催化剂提供了理论指导。
其他文献
劳动力市场的全球化导致了大量的外籍企业及外籍员工涌入海外寻求有利可图的商业机会和工作机会。而和本土相异的文化环境对外籍员工的适应性以及迁居海外的一系列问题密不可分。论文对中国侨民员工在巴基斯坦工作和社会中面对的挑战进行了研究。论文的主要研究内容是:首先确定中国侨民在巴基斯坦工作和社会中所面临的困难;其次,明确影响中国侨民文化适应的重要影响要素,最后,通过本文的研究对中国侨民在巴基斯坦所面临的挑战进
精准的风电功率预测在保障安全性与可靠性、减少风能浪费、提高经济性等各方面发挥重要作用,有利于促进从发电到用电各环节的优化,降低各环节运行风险,有效提高风电的利用效率。但是风的波动性和间歇性使得风电功率难以预测准确。本文在探究风电功率预测方法时,围绕如何提高预测准确度的问题,提出了一种基于小波变换(Wavelet)和卷积神经网络(Convolutional Neural Networks,CNN)-
本次翻译的原文来自世界资源研究所和沃旭能源联合发布的研究报告《开启可再生能源的未来》。该报告主要介绍了扩大可再生能源投资规模所遇到的挑战及相应的解决办法,并选取部分亚洲及拉丁美洲国家作为案例,进行详细分析。全文约8000个英文单词,译成中文后约15000个汉字。双碳背景下,报告的中文译本对于推进我国能源转型,吸引更多私营部门投资具有参考借鉴意义。考虑到该研究报告作为信息型文本在词汇、句法、篇章层面
“碳中和,碳达峰”目标的提出为能源结构转型和清洁能源的发展提供了机遇。其中核能作为低碳能源选项之一,已经促进了低碳发展,并将在实现“碳中和,碳达峰”的目标中发挥至关重要的作用。然而,核电的发展面临着妥善处理与处置放射性废物的问题。吸附是常用的处理放射性废水的方法,其核心在于寻求合适的吸附材料。研究吸附的传统方法为单因素的批次实验法,而寻找合适的吸附材料需要大量的尝试,会消耗较多的人力、物力,接受难
近年来,有机-无机杂化铅基钙钛矿太阳电池(Lead-PSCs)迅速发展,但毒性与稳定性等问题很大程度上限制了该电池的进一步应用。由于A3Bi2I9(A=CH3NH3,Rb,Cs,NH4 X=Br,Cl)固有的稳定性和较低的毒性,这种三元卤化物也作为一种潜在的光吸收材料被深入研究。但A3Bi2I9钙钛矿的低维度和间接宽禁带隙(>2.2 eV)可能导致太阳电池光电转化效率(PCE)降低。因此科研人员开
随着大数据时代的到来,人工智能和大数据技术快速发展。在社会生活中,数据已经成为重要的资源。在电力系统中,电力信息网络快速发展,数据中台建设不断推进,电力数据大量增加。由于通过电力系统数据链路传输的数据关系到国家能源生产和百姓的日常生活,恶意用户通过数据链路对电力生产主机进行攻击就会导致国家能源战略受到威胁。本文对电力系统数据链路安全精准评价进行研究。本文的主要工作如下:首先提出一种图深度卷积自编码
斯蒂芬·乔舒亚·桑德海姆(1930-2021,Stephen Joshua Sondheim)是美国百老汇著名音乐剧词曲作家,他在传统音乐剧的基础上发展出一种新的音乐剧体裁——概念音乐剧,为美国音乐剧的发展做出了重要贡献。然而,桑德海姆不同意“概念音乐剧”的称谓,且音乐剧学界对概念音乐剧的意见争论不休,至今未能形成统一意见。本文以斯蒂芬·桑德海姆和其作品《伴侣》《星期天与乔治在公园》为研究对象,研
齿轮箱在风力发电、航空航天、运输机械等现代工业设备中得到了广泛的应用。作为机械传动机构,其运行状态将直接影响到整个机械设备能否正常工作。但是通常情况下齿轮箱结构较为复杂、工作环境恶劣,在机械设备中齿轮箱发生故障的概率较高。而作为机械设备中连接和传递动力的核心部件之一,齿轮箱一旦发生故障,会造成较大经济损失甚至人员伤亡。因此研究齿轮箱故障诊断方法、对齿轮箱进行故障诊断以确保齿轮箱正常工作具有重要意义
化石能源日渐枯竭且在发电过程中污染环境,可再生能源的开发利用广受关注。太阳能资源丰富、绿色无污染,目前已有光伏发电、光热发电和光伏/热发电等太阳能发电技术。分频型光伏/热(PV/T)系统的能量利用率较高,逐渐成为研究的热点。但PV/T系统的能量转换是典型的光-热-电多物理场耦合过程,数值模型的求解运算十分复杂。为更好地预测光谱分频型PV/T系统的性能,目前已提出有限体积法-离散坐标(FV-DO)辐
教师在教学中要切实以学生的实际情况为基础,以道德与法治教学内容为依据,通过开展灵活教学和开放式课堂,促进学科教学质量的显著进步,实现学生道德与品行的全面提高。本文立足于小学道德与法治教学角度,分析了小学道德与法治课堂教学有效策略,希望具有一定参考价值。