论文部分内容阅读
本文研究的是深部金属矿山岩爆卸压爆破控制技术研究。正如前研究证明了,矿床是加强一个国家经济发展的重要有价值的材料。人类对矿藏的无限需求导致地下矿山的开采深度不断增加。随着深部矿产资源的开采和地应力的高度集中,岩爆的频繁发生,严重阻碍了深部矿产资源的安全经济开采。由于开采深度越大,可能伴随着岩爆问题的发生,因此,作为一种深部矿山安全工具,卸压爆破的应用越来越广泛。其他研究员发现,在预测了岩爆倾向性后,可以对高应力集中区的卸压做出正确的决策。在这方面,应力传递原理可以通过使用卸压爆破技术来实现。为了实现高峰矿山深部资源的安全高效开采,本研究对岩爆和卸压爆破进行了初步的回顾,然后采用岩爆倾向性评价判据对岩爆倾向性进行评价,作为选择合适的采矿方法和卸压方案提供决策依据。对于岩爆灾害,为了彻底理解岩爆问题回顾进行了,引起了作者对深部矿井岩爆灾害进行详细研究的兴趣。通过对卸压爆破技术的深回顾,为进一步提高其现场应用水平提供了一定的理解和想法。对于矿山案例研究,本硕士论文以高峰矿山105号深部矿体为研究对象。主要根据矿区已初步掌握的地质条件,地应力和岩石力学参数来评价岩爆倾向。随着矿区实测地应力和岩石力学参数,采用5个岩爆倾向性评估判据,如Barton判据(σt/σ1),Barton判据(σc/σ1),Brittleness判据(σc/σt),Maximum stored elastic strain energy指数(σvc2/2E),Elastic energy指数(Wet),Impact energy指数。根据高峰矿山105号锡矿体岩爆倾向性评价结果,决定该矿体满足岩爆倾向性条件。为了限制开采技术难题,实现该矿体的安全高效开采,本文对105号矿体进行了卸压开采技术(卸压爆破技术)研究,以防止开采过程中可能出现的岩爆问题。为了分析和选择有效的卸压爆破方案,本文采用ABAQUS,Pro/E,和Hypermesh14.0数值模拟软件对所提出的卸压爆破方案进行了模拟分析。根据采矿技术条件、地应力、矿体总体趋势和岩石力学参数,首先分析的不同卸压炮孔深度条件下卸压爆破效果。模拟炮孔深度分别为6米,8米和10米时,在回采作业面前方进行爆破卸压。这三种条件中,装药深度均为1m,填塞长度分别为5m,7m,9m。模拟结果发现:在这3个爆破孔深度中,当爆破孔深度为6米时,卸压效果明显。这主要是由于以下事实:卸压爆破后,工作面前墙围岩中的高应力被转移到远离工作面围岩的位置(工作面的前方)。得出最优卸压炮孔深度为6m的情况下,提出了4种卸压爆破方案,并与1种无卸压爆破工作面进行了对比分析。提出的4种卸压爆破方案为:工作面的两帮墙卸压爆破(DBSⅠ),工作面的前墙卸压爆破(DBSⅡ)、工作面的覆盖层卸压爆破(DBSⅢ)和工作面的三帮(两帮和前墙)卸压爆破(DBSⅣ)。根据数值模拟结果,得出以下结论:1.工作面的覆盖层卸压爆破(DBSⅢ):在这个方案,卸压应力主要在竖直方向转移,但是在沿矿体走向方向,高应力集中没有转移,卸压效果不明显。2.工作面的两帮墙卸压爆破(DBSⅠ):在这个方案,高应力集中转移到远离工作面侧壁围岩的位置,而作用在工作面的前墙围岩的应力不被转移。说明工作面全围岩的高应力集中没有得到有效的位移,因此,卸压效果不是很明显。3.工作面的前墙卸压爆破(DBSⅡ):在这个方案中,卸压爆破后,工作面前墙围岩中的高应力被转移到远离工作面围岩的位置(工作面的前方),而作用在工作面侧壁围岩上的应力可能诱发工作面岩爆。因此,这个方案对工作面具有一点卸压效果。4.和工作面的三帮(两帮和前墙)卸压爆破(DBS Ⅳ):这个方案是方案Ⅰ(DBS Ⅰ)和方案Ⅱ(DBS Ⅱ)的组合。对工作面具有明显的卸压效果。卸压爆破后,一方面,高应力被DBS Ⅱ转移到深处(工作面的前方),另一方面,高应力被DBS Ⅰ转移到远离工作面侧壁围岩的位置。DBS Ⅳ(DBS Ⅰ和DBS Ⅱ)将高应力转移到远离工作面所有围岩(侧壁和前墙围岩)的地方,降低了工作面发生岩爆的可能性,然后创造安全开采的条件。因此,方案Ⅳ(DBS Ⅳ)是推荐采用的最佳方案。