论文部分内容阅读
氧化锌(ZnO)是一种具有六角纤锌矿结构的金属氧化物半导体材料。作为一种宽带隙,低介电常数,高化学稳定性的多功能材料,其应用领域十分广泛,常被用于制作声表面波器件、气敏传感器、压敏电阻及透明导电电极等。制备ZnO纳米结构材料的方法有很多,例如:化学气相沉积法(MOCVD)、溶胶-凝胶法(Sol-gel)、磁控溅射法(MS)、脉冲激光沉积法(PLD)和超声雾化热解喷涂法(Ultrasonic Spray pyrolysis, USP)等。其中,USP技术在金属氧化物材料制备方面具有独特的优势,具体表现在:设备简单,成本低廉;沉积速率快,可大面积成膜;无需高真空,即使在常压下也可以进行纳米结构的制备;在工艺参数选择恰当的条件下,所制材料的质量和性能完全可以和CVD或PLD所制材料的质量和性能相媲美。本文选用0.2mol/L(近似)的Zn(CH3COO)2·2H2O作为前驱体溶液制备ZnO纳米结构。系统地研究了衬底温度(Ts)这一关键因素对USP技术所制ZnO纳米结构的形貌及其他各项性能的影响;运用自行设计的“时序快门法”对ZnO纳米结构膜的成膜过程进行了深入探究;试图往ZnO纳米结构膜中掺杂Cu元素(乙酸铜作为前驱体),制备出具有室温铁磁性的稀磁半导体材料(Zn1-xCuxO),并通过PPMS,XRD,XPS和EPMA等测试手段来验证Cu掺杂。实验结果表明:1.当Ts从430°C升高至610°C,ZnO纳米结构呈现出从片状到颗粒膜状再到阵列状的转变特性;Ts为550°C时制备的ZnO纳米结构膜具有最低的电阻率和最高的载流子浓度;样品中存在有缺陷,这些缺陷的数量会随Ts的升高而减少;大部分样品的可见光透过率高于90%。2.观察到USP技术所制备ZnO纳米结构膜的生长机制属常见的“类岛状”。3. ZnO纳米结构在室温下呈抗磁性,而Cu元素的掺杂便能使其产生室温铁磁性。样品的饱和磁化强度(Ms)和矫顽力(Hc)均较弱。4.检测到Zn1-xCuxO样品中的Cu含量甚低,可能的原因涉及制备工艺、Cu元素在ZnO纳米结构膜中的溶解度以及检测设备的合理选择等因素。