论文部分内容阅读
题 两抛物线 y2 =7-3x与x2 =7-3 y在第一象限内交点的个数为 ( )(A) 1 (B) 2 (C) 3 (D) 4解 考查两抛物线 y2 =7-3x ,x2 =7-3 y可知它们关于直线 y =x对称 ,以 y =x代入方程 y2 =7-3x ,得x2 +3x -7=0 ,解得x =-3± 3 72 ;以x =y代入
The number of intersections of the two parabola y2 = 7-3x and x2 = 7-3 y in the first quadrant is () (A) 1 (B) 2 (C) 3 (D) 4 Solution Two parabolas y2 = 7 -3x,x2 =7-3 y, we know that they are symmetric about the straight line y = x, and y = x is substituted into the equation y2 = 7-3x. We get x2 +3x -7=0 and the solution is x =-3± 3 72; x = y substitution